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Summary

A critical function in a fault-tolerant computer architecture is the synchronization of
the redundant computing elements. One means of accomplishing this is for each com-
puting element to maintain a local clock that is periodically synchronized with the other
clocks in the system. The synchronization algorithm must include safeguards to ensure
that failed components do not corrupt the behavior of good clocks. Reasoning about fault-
tolerant clock synchronization is difficult because of the possibility of subtle interactions
involving failed components. Therefore, mechanical proof systems are used to ensure that
the verification of the synchronization system is correct.

In 1987, Schneider (Tech. Rep. 87-859, Cornell Univ.) presented a general proof
of correctness for several fault-tolerant clock synchronization algorithms. Subsequently,
Shankar (NASA CR-4386) verified Schneider’s proof by using the mechanical proof sys-
tem EHDM. This proof ensures that any system satisfying its underlying assumptions will
provide Byzantine fault-tolerant clock synchronization. This paper explores the utility of
Shankar’s mechanization of Schneider’s theory for the verification of clock synchronization
systems.

In the course of this work, some limitations of Shankar’s mechanically verified the-
ory were encountered. These limitations include one assumption that is too strong and
also insufficient support for reasoning about recovery from transient faults. With minor
modifications to the other assumptions, a mechanically checked proof is provided that
eliminates the overly strong assumption. In addition, the revised theory allows for proven
recovery from transient faults.

Use of the revised theory is then illustrated with the verification of an abstract design
of a fault-tolerant clock synchronization system. The fault-tolerant midpoint convergence
function is proven with EHDM to satisfy the requirements of the theory. Then a design
using this convergence function is shown to satisfy the remaining constraints.

vi



Chapter 1

Introduction

At first glance, the development of fault-tolerant computer architectures does not ap-
pear to be a difficult problem. Clearly, three computers should be sufficient to survive a
single fault. A simple majority vote should mask any errors caused by a failed compo-
nent. However, to determine when to vote, the computers must be synchronized. This
synchronization is casy with a perfect clock that coordinates actions among the redundant
computing elements. Unfortunately, clocks also fail. Thus, each redundant computing el-
ement must maintain its own clock. No clock keeps perfect time: all drift with respect to
some reference standard time. Similarly, clocks drift with respect to each other. Therefore,
regular synchronization of the clocks of the redundant computing elements is necessary.
An obvious algorithm for synchronizing clocks of three computers is for each to periodi-
cally read the clocks of the other two and then set its own clock to equal the mid value
of the three observed values. Intuitively, this algorithm should work, but consider what
happens if one clock fails so that it behaves in an arbitrary fashion. The classic example
is given by Lamport and Melliar-Smith (ref. 1). Suppose that the clock for computer A
shows 1:00, the clock for computer B shows 2:00, and the clock for computer C has failed
in such a way that when A reads C’s clock it shows 0:00 and when B reads C’s clock it
shows 3:00. Clearly, neither A nor B has a compelling reason to adjust its clock and they
may continue to drift apart. The presentation of Lamport and Melliar-Smith continues
with a formal statement of the clock synchronization problem and presents three verified
solutions. Subsequently, a number of other solutions to problems related to clock syn-
chronization were developed, including those in references 2 through 7. A survey of the
various approaches is given by Ramanathan, Shin, and Butler (ref. 8).

Schneider (ref. 9) recognized that the many approaches to clock synchronization can
be presented as refinements of a single, verified paradigm. Shankar (ref. 10) provides
a mechanical proof (using EHDM (ref. 11)) that Schneider’s schema achieves Byzantine
fault-tolerant clock synchronization, provided that 11 constraints are satisfied. (A failure
that exhibits arbitrary or malicious behavior is called a Byzantine fault, in reference to the
Byzantine Generals problem of Lamport, Shostak, and Pease (ref. 12).) One goal of this
paper is to examine the utility of Shankar’s mechanically checked version of Schneider’s
theory in the verification of a particular clock synchronization system.



The field of fault-tolerant computing is replete with examples of intuitively correct
approaches that were later shown to be insufficient. In one system, the design of the fault-
tolerance mechanism was cited as a major contributor to the unreliability of the system
(ref. 13). Because of the extreme level of reliability required for many fault-tolerant sys-
tems, employing rigorous verification techniques is necessary. (An often quoted require-
ment for critical systems employed for civil air transport is a probability of catastrophic
failure less than 10~? for a 10-hour flight (ref. 14).) One such technique is the use of for-
mal proof to establish that a design has certain properties. Additional certainty is gained
by confirming the verification with a mechanical proof system, such as EHDM. Another
benefit of machine-checked proofs is that the underlying assumptions are made explicit to
help to clearly define the necessary verification conditions.

Shankar’s verification of Schneider’s protocol provides a trusted formal specification
of a clock synchronization system. Many of the difficult aspects of the proof have been
verified in a generic manner; all that is required to verify a synchronization system is to
demonstrate that it meets the requirements of the general theory. This paper is a result
of the first attempt to verify a design using Shankar’s machine-checked theory (ref. 10).
In the course of the verification, some difficulties were encountered with the underlying
assumptions. The most significant problem was that one of the assumptions, bounded
delay, was too strong. Bounded delay asserts that there is a bound on the elapsed time
between synchronization events on any two good clocks. For some protocols, this property
is the key required to maintain synchronization. The proof of bounded delay can be as
difficult as the general synchronization property. This paper revises Shankar’s general
theory by modifying the remaining constraints to enable a general proof of bounded delay.

In an effort to demonstrate the applicability of formal proof techniques to the ver-
ification of highly reliable systems, the Langley Research Center is currently involved in
the development of a formally verified Reliable Computing Platform (RCP) for real-time
digital flight control (refs. 15, 16, and 17). The fault-tolerant clock synchronization circuit
is intended to be part of a verified hardware base for the RCP. The primary intent of
the RCP is to provide a verified fault-tolerant system that is proven to recover from a
bounded number of transient faults. The current model of the system assumes (among
other things) that the clocks are synchronized within a bounded skew (ref. 16). The clock
synchronization circuitry also should be able to recover from transient faults. Originally,
the interactive convergence algorithm (ICA) of Lamport and Melliar-Smith (ref. 1) was
to be the basis for the clock synchronization system, the primary reason being the exis-
tence of a mechanical proof that the algorithm is correct (ref. 18). However, modifications
to ICA to achieve transient-fault recovery are complicated. The fault-tolerant midpoint
algorithm of Welch and Lynch (ref. 2) is more readily adapted to transient recovery.

Even though the clock synchronization circuit was designed to recover from tran-
sient faults, there was no support in the machine-checked theory for proven recovery from
such failures. When the machine-checked theory was revised to remove the assumption of
bounded delay, additional modifications were made to expand the theory to accommodate
proven recovery from a bounded number of transient faults.



The synchronization circuit is designed to tolerate arbitrarily malicious permanent,
intermittent, and transient hardware faults. A fault is defined as a physical perturbation
altering the function implemented by a physical device. Intermittent faults are permanent
physical defects that do not continuously alter the function of a device (e.g., a loose wire).
A transient fault is caused by a one-shot, short-duration physical perturbation of a device
(e.g., a cosmic ray or electromagnetic effect). This perturbation can result in any of the
following situations:

1. Permanent damage to the device
2. No damage with a persistent error induced
3. No damage with the system recovering from the erroneous state

The first situation is classified as a permanent fault; the second and third are transient
faults. A good design can eliminate the second situation by establishing a recovery path
from all possible system states. Such a design is called self-stabilizing (ref. 19). Once the
physical source of the fault is removed, the device can function correctly. The synchro-
nization circuit is designed to automatically recover from a bounded number of transient
failures.

Most proofs of fault-tolerant clock synchronization algorithms are by induction on
the number of synchronization intervals. Usually, the base case of the induction, the ini-
tial skew, is assumed. The descriptions in references 1, 9, 10, and 18 all assume initial
synchronization with no mention of how it is achieved. Others, including references 2, 4,
6, and 20, address the issue of initial synchronization and give descriptions of how it is
achieved in varying degrees of detail. In proving an implementation correct, the details
of initial synchronization cannot be ignored. If the initialization scheme is robust enough,
it can also serve as a recovery mechanism from multiple correlated transient failures (as
noted in ref. 20).

The chapters in this paper arc arranged by decreasing generality. The most gen-
eral results are presented first and are applicable to a number of designs. The use of the
theory is then illustrated by application to a specific design. In Chapter 2, the defini-
tions and constraints required by the general clock synchronization theory are presented.
Chapter 3 presents the main revision made to Shankar’s theory, which is removing the
assumption of bounded delay. Chapter 4 presents mechanically checked proofs that the
fault-tolerant midpoint convergence function satisfies the constraints required by the the-
ory. In Chapter 5, a hardware realization of a fault-tolerant clock synchronization circuit
is introduced and shown to satisfy the remaining constraints of the theory. Finally in
section 6, the mechanisms for achieving initial synchronization and transient recovery are
presented. Modifications to the theory to support the transient recovery arguments are
also presented.

The information presented in this report was included in a thesis offered in partial
fulfillment of the requirements for the Degree of Master of Science, The College of William
and Mary in Virginia, Williamsburg, Virginia, 1992.



Chapter 2

Clock Definitions

A clock synchronization system ensures that the readings of two synchronized clocks
differ by no more than a small amount § for all time ¢t. In addition, a fault-tolerant
collection of clocks should maintain synchrony, even if a limited number of clocks have
failed. Figure 2.1 illustrates a possible four-clock system that is designed to tolerate
the failure of no more than one clock. Each nonfaulty clock provides a synchronized
time reference VCp to local processing element p. This reference is guaranteed to be
approximately synchronized with the corresponding value on any other good clock in the
system. This guarantee is provided by an internal physical clock PC, and a distributed
fault-tolerant clock synchronization algorithm executing in each of the redundant channels.
A generalized view of the algorithm employed is

do forever {
exchange clock values
determine adjustment for this interval
determine local time to apply correction
when time, apply correction}

A system that implements this algorithm and satisfies the definitions and conditions
presented in this chapter possesses the following property (presented in (ref. 10)):

Theorem 2.1 (bounded skew) For any two clocks p and g that are nonfaulty at

time t,
[VCy(t) = VCq(t)| < 6

In other words, the skew between good clocks is bounded by 6.

2.1 Notation

A fault-tolerant clock synchronization system is composed of an interconnected collec-
tion of physically isolated clocks. Each redundant clock incorporates a physical oscillator
that marks passage of time. Each oscillator drifts with respect to real time by a small
amount. Physical clocks derived from these oscillators similarly drift with respect to each
other. Following reference 1, the discussion of clocks involves two views of time. Real time

4
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Figure 2.1: Four-clock system.

corresponds to an assumed Newtonian time frame; clock time is the measurement of this
time frame by some clock. Identifiers representing real-time quantities will be denoted by
lower case letters, e.g.. ¢, s: Var time. Here, ¢ and s are variables (in the logical theory) of
type time. A declaration without the keyword Var defines a constant, e.g., t: time defines
the constant ¢; of type time. Typically, time is taken as ranging over the real numbers.
Clock time will be represented by upper case letters, e.g., T, S: Var Clocktime. Although
Clocktime is often treated as ranging over the reals (refs. 2, 10, and 18), a physical realiza-
tion of a clock marks time in discrete intervals, In this presentation Clocktime is assumed
to range over the integers. The unit for both time and Clocktime is the tick. There are
two sets of functions associated with the physical clocks': functions mapping real time to
clock time for each process p,?

PC} : time — Clocktime
and functions mapping clock time to real time,

pcy  Clocktime — time

'Shankar's presentation includes only the mappings from time to Clocktime. The mappings from Clock-
time to time are added here because they are more natural representations for some of the proofs.

2 . > . . -

“Declarations of the form f oo — 3 define a function S with domain o and range 7.



The notation PC,(t) represents the reading of p’s physical clock at real time ¢, and pep(T)
denotes the earliest real time that p’s clock reads T'. By definition, PCy(pcp(T)) = T for
all T. In addition, we assume that pey(PCp(t)) <t < pep(PCy(t) + 1).

The purpose of a clock synchronization algorithm is to make periodic adjustments to
local clocks to keep a distributed collection of clocks within a bounded skew of each other.
This periodic adjustment makes analysis difficult; therefore an interval clock abstraction
is used in the proofs. Each process p has an infinite number of interval clocks associated
with it, each of these is indexed by the number of intervals since the beginning of the
protocol. An interval corresponds to the elapsed time between adjustments to the virtual
clock. These interval clocks are equivalent to adding an offset to the physical clock of a
process. As with the physical clocks, they are characterized by two functions: [ C;, : time —
Clocktime and ici, . Clocktime — time. If we let adj;, - Clocktime denote the cumulative
adjustment made to a clock as of the ith interval, we get the following definitions for the
ith interval clock:

ICi(t) = PCy(t)+ adjy

ic;(T) = pcp(T — adj;;)
From these definitions, it is simple to show ICH(ich(T)) = PCp(pep(T — adj})) + adjy, =T
for all T. Sometimes it is more useful to refer to the incremental adjustment made in a
particular interval than to use a cumulative adjustment. By letting ADJ; = adj]f,+1 — adj;,
we get the following equations relating successive interval clocks:

i+l i i
ICITH(t) = IC,(t)+ADJ,
i+l g i
ch+ (T) = ic,(T— ADJ)

A virtual clock, VCy, : time — Clocktime, is defined in terms of the interval clocks by the
equation
VC,(t) = ICL(t)  (t, <t< titt)

The symbol t; denotes the instant in real time that process p begins the ith interval clock.
Notice that there is no mapping from Clocktime to time for the virtual clock because VCp
is not necessarily monotonic; the inverse relation might not be a function for some syn-
chronization protocols. The definition of VCp(t) from the equations for IC is illustrated
in figure 2.2.

Synchronization protocols provide a mechanism for processes to read each other’s
clocks. The adjustment is computed as a function of these readings. In Shankar’s presen-
tation, the readings of remote clocks are captured in function @;,“ : process — Clocktime,
where @;,“(q) denotes process p’s estimate of ¢’s ith interval clock at real time t;,“
(ie., I C}I(tz,“)). Each process executes the same (higher order) convergence function,
cfn : (process, (process — Clocktime)) — Clocktime, to determine the proper correction to
apply.® Shankar defines the cumulative adjustment in terms of the convergence function
as follows:

3The domain of a higher order function can include functions. In this case, the second argument of ¢fn
is itself a function with domain process and range Clocktime.
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Figure 2.2: Determining V Cp(¢). Scale does not permit display of IC), as step function.

adj;Jrl = cfn(p, @;,“)—PC’At;“)
adj;,) = 0

The following can be simply derived from the preceding definitions:

VCp(t;;“) = IC’;;“(t;“): cfn(p,@é“)

ICFH(t) = cfn(p,©OL1) + PCy(t) — PCy(ts)
ADJ; = ofn(p, OF1) — ICE(t5)

Using some of these equations and the conditions presented in section 2.2, Shankar mechan-
ically verified Schneider’s paradigm. Chapter 3 presents a general argument for satisfving
one of the assumptions of Shankar’s proof. The argument requires some modifications
to Shankar’s constraints and introduces a few new assumptions; in addition, some of the
existing constraints are rendered unnecessary.

A new constant, R : Clocktime, is introduced which denotes the expected duration
of a synchronization interval as measured by clock time. (That is, in the absence of drift
and jitter, no correction is necessary for the clocks to remain synchronized. In this case,
the duration of an interval is exactly R ticks.) We also introduce a collection of distin-
guished clock times S* : Clocktime, such that $? = iR + S° and S° is a particular clock
time in the first synchronization interval. We also introduce the abbreviation s; defined



as equal to icip(Si). The only constraints on S* are that, for each nonfaulty clock p and
real times t; and %2,

(VCp(t1) = S A(VCp(t2) = S Dt =ty
and some real time ¢ exists, such that
VC,(t) = S

The rationale for these constraints is that we want to unambiguously define a clock time
in each synchronization interval to simplify the arguments necessary to bound separation
of good clocks. If we choose a clock time near the instant that an adjustment is applied,
it is possible that the VC will never read that value because the clock has been adjusted
ahead or that the value will be reached twice because of the clock being adjusted back. In
reference 2, the chosen unambiguous event is the clock time that each good processor uses
to initiate the exchange of clock values. For other algorithms, any clock time sufficiently
removed from the time of the adjustment will suffice. A simple way to satisfy these
constraints is to ensure that for all 1,

; i i+1 41 i
SZ+ADJP<T; < $™ —ADJ,
i+l _ i (it
where TZ ! = IC(t,").

Table 2.1 summarizes the notation for the key elements required for a verified clock syn-
chronization algorithm. Table 2.2 presents the many constants used in section 2.2. They
are described when they are introduced in the text but are included here as a convenient
reference.

2.2 Conditions

This section presents the assumptions required in the proof of theorem 2.1. The
conditions can be separated into three main classes: abstract properties required of the
convergence function, physical properties of the system, and various constraints on the
length of the synchronization interval. Additional constraints are also determined by the
proof of theorem 2.1. Some of these properties are taken directly from Shankar’s presenta-
tion, whereas others are revised in order to facilitate verification of a clock synchronization
system. Additional modifications are made to enable proofs of transient-fault recovery.

2.2.1 Properties of Convergence Function

Synchronization algorithms use a convergence function c¢fn(p,d) to determine the ad-
justment required to maintain synchrony. The general theory requires that the conver-
gence function satisfy three properties: translation invariance, precision enhancement,
and accuracy preservation. Shankar mechanically proves that the interactive convergence
function of Lamport and Melliar-Sinith (ref. 1) satisfies these three conditions. A mechan-
ically checked proof that the fault-tolerant midpoint function used by Welch and Lynch
(ref. 2) satisfies these conditions is presented in Chapter 4 and was previously reported



Table 2.1: Clock Notation

Notation Definition
PCy(t) Reading of p’s physical clock at real time ¢
pep(T) Earliest real time that p’s physical clock reads T
IC;(t) Reading of p's ith interval clock at real time ¢
‘ic;',(T) Earliest real time that p’s ith interval clock reads T
VC,(t) Reading of p’s virtual clock at time ¢
70 Clocktime at beginning of protocol (for all good clocks)
T;H Clocktime for VC), to switch from ith to (7 + 1)th interval clock
t;] Real time that processor p begins ith synchronization
. . ; . " 1
interval (t,*! = i, (7))
R Clocktime duration of synchronization interval
S0 Special Clocktime in initial interval
Si Unambiguous clock time in interval i; §' = iR + §°
S;, Abbreviation for ic;(Si)
adj;; Cumulative adjustment to p’s physical clock up through t;
ADJ;) Abbreviation for adj;Jrl — (Ldj;
@;,“ Array of clock readings (local to p) sugh that @;(q) is p's
reading of ¢'s ith interval clock at t;"”
cfn(p, G)l",“) Convergence function executed by p to establish VC,,(t;)* h
Table 2.2: Constants
Constant Definition

bs : Clocktime
6 : Clocktime
p 1 number

3 time

3 time

Bread © time

Tmin - time
Tmar . time

A : Clocktime
A’ number

a(B' 4+ 2A’) : number

Bound on skew at beginning of protocol

Bound on skew for all time

Allowable drift rate for a good clock, 0 < p <« 1
Maximum eclapsed time from s;, to s, (p and ¢ working)
Maximum elapsed time from ¢y, to ty (p and ¢ working)

Maximum separation between s' and st . for pto

p q
accurately read q. 3" < Bi0q < R/2
Minimum elapsed time from t; to t;’,*'l for good p
Maximum elapsed time from i; to tl’;” for good p
Bound on error reading a remote clock
Reformulated error bound for reading a remote clock

Bound on ADJ; for good p and all i




in reference 21. Schneider presents proofs that a number of other protocols satisfy these
properties in reference 9. The conditions in this section are unchanged from Shankar’s
presentation.

The constraints on the convergence function assume a bound on the number of faults
to be tolerated. This condition is stated here as condition 1; in Shankar’s presentation,
this was condition 8.

Condition 1 (bounded faults) At any time t, the number of faulty processes is at
most F'.

Translation invariance means that the value obtained by adding X : Clocktime to the
result of the convergence function should be the same as adding X to each of the clock
readings used in evaluating the convergence function. This was condition 9 in Shankar’s
presentation. The statement of this condition adapts notation from the lambda calculus.
The symbol A is used to define an unnamed function. For example, Az.z + 2 defines a
function of one argument z that returns the sum of z and 2. For a detailed treatment of
the lambda calculus, see reference 22.

Condition 2 (translation invariance) For any function § mapping clocks to clock
values,

cfn(p, dn : 0(n) + X)) = cfn(p,8) + X

Precision enhancement is a formalization of the concept that, after executing the con-
vergence function, the values of interest should be close together. Essentially, if the argu-
ments presented to the convergence function are sufficiently similar, there is a bound on
the difference of the results. In the proof of theorem 2.1, this condition ensures that if a
large enough collection of good clocks is synchronized in one interval, then they will still
be synchronized in the next. This was Shankar’s condition 10.

Condition 3 (precision enhancement) Given any subset C of the N clocks with
|C| > N — F and clocks p and q in C, then for any readings v and 0 satisfying the
conditions

1. Foranylin C, |y(£) —6(f)] < X
9. For anyl, m in C, |y(£) —v(m)| <Y
3. For anyl, m in C, |6(£) —6(m)| <Y

there is a bound w(X,Y) such that

lefn(p, v) — cfnlq,0)] < (X,Y)

10



Accuracy preservation formalizes the notion that there should be a bound on the amount of
correction applied in any synchronization interval. Accuracy preservation was condition 11
in Shankar’s report.

Condition 4 (accuracy preservation) Given any subset C' of the N clocks with
ICl > N — F and clock readings 6 such that, for any |l and m in C, the bound
10(€) — 8(m)| < X holds, there is a bound a(X) such that for any p and q in C,

lefr(p, 6) — 6(q)| < a(X)

For some convergence functions, the properties of precision enhancement and accuracy
preservation can be weakened to simplify arguments for recovery from transient faults.
Precision enhancement can be satisfied by many convergence functions even if p and q are
not in C'. Similarly, accuracy preservation can often be satisfied even when p is not in C.

2.2.2 Physical Properties
Some of the conditions characterize the expected physical properties of the system.

We rely on experimentation and engineering analysis to demonstrate these conditions.

The rate at which a good clock can drift from real time is bounded by a small positive
constant p. Typically, p < 1075,

Condition 5 (bounded drift) There is a nonnegative constant p such that if p’s
clock 1s nonfaulty during the interval from T to S(S>T), then

S—T
1+p

< pep(S) = pep(T) < 1+ p)(S - T)

This condition replaces Shankar’s condition 2. This assumption is stronger than Shankar’s
bound on drift, but the change is necessary to accommodate the integer representation of
Clocktime. However, if the unit of time is taken to be a tick of Clocktime and Clocktime
ranges over the integers, we can then derive the following bound on drift, which is sufficient
for preserving Shankar’s mechanical proof (with minor modifications):

Corollary 5.1 If p’s clock is not faulty during the interval from t to s then,
L(s = 8)/(1+ p)] < PCy(s) — PCp(t) < [(1+ p)(s — 1)]

Note that with Shankar’s algebraic relations defining various components of clocks, we
can use these constraints to bound the drift of any interval clock (z’c;) for any 1.

The following corollary to bounded drift limits the amount two good clocks can drift
with respect to each other during the interval from 7T to S.

11



Corollary 5.2 If clocks p and q are not faulty during the interval from T to S,

Ipea(S) = peg(S)| < pep(T) — peg(T)| + 20(5 = T)

This corollary is used in bounding the amount of skew caused by drift during each syn-
chronization interval.

We can also derive an additional corollary (adapted from lemma 2 of ref. 2).

Corollary 5.3 If clock p is not faulty during the interval fron. T to S,

|(pep(8) = 8) = (pep(T) = T)| < plS =T

This corollary recasts bounded drift into a form more useful for some proofs. A similar
relation holds for PC.

All clock synchronization protocols require each process to obtain an estimate of the
clock values for other processes within the system. The determination of this estimate is
called reading the remote clock, even if there is no direct means to observe its value. Typi-
cally, some underlying communication protocol is employed which allows a fairly accurate
estimate of other clocks in the system. Error in this estimate can be bounded but not
eliminated. A discussion of different mechanisms for reading remote clocks can be found
in Schneider (ref. 9). Shankar’s statement of the bound on reading error is as follows:

Shankar’s Condition 7 (reading error) For nonfaulty clocks p and q,

ICi(t5) - O3 (@) < A

This condition neglects an important point. In some protocols, the ability to accurately
read another processor’s clock is dependent on the clocks being already sufficiently syn-
chronized. Therefore, we add a precondition stating that the real-time separation of s;
and s is bounded by some value of Bread- The precise value of Bread required to en-
sure bounds on the reading error is determined by the implementation, but in all cases
B' < Bread < R/2. Another useful observation is that an estimate of the value of a remote
clock is subject to two interpretations. It can be used to approximate the difference in
Clocktime that two clocks show at an instant of real time, or it can be used to approximate
the separation in real time that two clocks show the same Clocktime.

Condition 6 (reading error) For nonfaulty clocks p and q, if |s%, — 54| < Bread
1. [ICL(E) — @51 (g)] = (5 () — IC(t5™1)) = (ICH(t5™) = ICH (DI < A
2. (011 (q) — ICH(tE)) — (e (T3+!) —icg (T ) < A
3. [(©iF(q) — ICH(tLH)) — (ich(SY) — icy (SN < A’

12




The first clause just restates the existing read error condition to illustrate that the read
error can also be viewed as the error in an estimate of the difference in readings of Clock -
time, that is, the estimate allows us to determine approximately another clock’s reading at
a particular instant of time. The second clause recognizes that this difference can also be
used to obtain an estimate of the time when a remote clock shows a particular Clocktime.
For these relations, elements of type Clocktime and time are both treated as being of type
number. Clocktime is a synonym for integer, which is a subtype of number, and time is a
synonym for number. The third clause is the one used in this paper; it relates real-time
separation of clocks when they read S° to the estimated difference when the correction
is applied. A bound on this could be derived from the second clause, but it is likely
that a tighter bound can be derived from the implementation. Since the guaranteed skew
Is derived, in part, from the read error, we wish this bound to be as tight as possible.
For this reason, we add it as an assumption to be satisfied in the context of a particular
implementation.

2.2.3 Interval Constraints

The conditions constraining the length of a synchronization interval are determined,
in part, by the closeness of the initial synchronization. The following condition replaces
Shankar’s condition 1:

Condition 7 (bounded delay init) For nonfaulty processes p and q,

Ity — tgl < 8" = 2p(S° — 1)

A constraint similar to Shankar’s can be easily derived from this new condition by us-

ing the constraint on clock drift. (Shankar’s condition 1 is an immediate consequence of

lemma 2.1.1 in appendix A.) An immediate consequence of this and condition 5 is that
0 _ 0 I2%

]sp sq] < 4.

Shankar assumes a bound on the duration of the synchronization interval.

Shankar’s Condition 3 (bounded interval) For nonfaulty clock p,

0< Tinin < t;;rl - t;; < Toar

The terms r,,, and r,,,, are uninstantiated constants. In this formulation, a nominal
duration (R) of an interval is assumed determined from the implementation. We set a
lower bound on R by placing restrictions on the events S¢. This restriction is done by
bounding the amount of adjustment that a nonfaulty process can apply in any synchro-
nization interval. In Chapter 3, the term a(f' + 2A’) is shown to bound [ADJ;;| for
nonfaulty process p. The function « is introduced in condition 4, 3 is a bound on the
separation of clocks at a particular Clocktime in each interval, and A’ bounds the error in
estimating the value of a remote clock.
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Condition 8 (bounded interval) For nonfaulty clock p,

St a(f +20) < TH < S — a(f' + 2A)

By remembering that St = iR+ S, it is easy to see that R > 2a(8 + 2A’). Clearly, we
can define 7 as (R — a(8 +2A))/(1 + p) and Tmar as (14 p)(R+ a(B +24")).

We need a condition to ensure that process g does not start its (i + 1)th clock before
process p starts its ith clock. The following condition is sufficient to meet this requirement,
which is a simple restatement of Shankar’s condition 6, using the definition of rmin from
Shankar’s condition 3.

Condition 9 (nonoverlap)

R — (B +2A")
1+p

B <

This condition essentially defines an additional constraint on R; namely, that B >
(1+p)8+ a(f +2A"), when 8 bounds the maximum separation of ti, and tf}.
2.2.4 Constraints on Skew

Shankar assumes the following additional conditions for an algorithm to be verified in
this theory. These additional constraints were determined in the course of his proof of
theorem 2.1.

1. w(2A + 28p, b5 + 2p(Tmas + B) +2A) < és
2. 65 + 2mea;r < o
3. a(bs +20(rmar+ B) +28) +A+p3 <6

These conditions relate the skew é guaranteed by the theory with the properties of preci-
sion enhancement and accuracy preservation.

When Clocktime was changed to range over the integers, these conditions had to be
modified. The bounds were altered to correspond to the revised version of bounded drift.
Shankar’s version of bounded drift was converted to correspond to corollary 5.1. (This
is stated as axioms rate_1 and rate_2 in module clockassumptions (appendix A).) The
mechanical proof was rerun and yielded the following constraints:

1. w([2A + 28p] + 1,65 + [2p(rmaz + B)+2A]+1) <és
2. 65 + [2prmaz-l +1< 0

3. a(bs + [20(rmaz + B) +2A1 + 1) + A+ [2p8] +1 <6
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The arguments used are identical to those presented by Shankar. The only difference is
that additional manipulations were needed with the floor and ceiling functions in order
to complete the proof. Appendix A contains the proof chain analysis which confirms that
these constraints are sufficient to prove theorem 2.1.

Since p is typically very small (< 1075), the above reworked constraints appear overly
conservative. It is possible to prove theorem 2.1 by assuming the following:

Lo dprimas + w((2A" + 2], |8 + 20 ) < &
2. [(1 + [))6’ + 2p7'mar-’ <4
3o a([f +2N )+ A+ 208 +1<6

A proof sketch can be found in appendix A.

2.2.5 Unnecessary Conditions

Two of the conditions presented in Shankar’s report were found to be unnecessary.
Shankar and Schneider both assume the following conditions in their proofs:

Shankar’s Condition 4 (bounded delay) For nonfaulty clocks p and q,

Ity —t,] < 8

The condition states that the elapsed time between two processes starting their ith in-
terval clock is bounded. This property is closely related to the end result of the general
theory (bounded skew) and should be derived in the context of an arbitrary algorithm.

The related property for nonfaulty clocks p and gq,
‘sfl - s;f <g

is proven independently of the algorithm in Chapter 3. This gives sufficient information
to prove bounded delay directly from the algorithm; however, this proof depends on the
interpretation of Tg“. Two interpretations and their corresponding proofs are also given
in Chapter 3.

The next condition states that all good clocks begin executing the protocol at the
same instant of real time (and defines that time to be 0):

Shankar’s Condition 5 (initial synchronization) For nonfaulty clock p,

0 _
=0

It is not possible to guarantee that all clocks start at the same instance of time; thus,
no implementation can guarantee this property. This property is used, in conjunction
with Shankar’s condition 1, to ensure the base case of the induction required to prove
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theorem 2.1. By defining tg = icg(TU), we can readily prove the base case with condi-
tions 5 and 7. Some constant clock time known to all good clocks is represented by T
(i.e., TV is the clock time in the initial state). The definition of tg states that all nonfaulty

clocks start the protocol at the same Clocktime.
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Chapter 3

General Solution for Bounded
Delay

The condition of bounded delay asserts that any two nonfaulty clocks begin each syn-
chronization interval at approximately the same real time. This property is nearly as
strong as theorem 2.1. In fact, the result follows immediately for some synchronization
protocols. This chapter establishes, for many synchronization protocols, that the condi-
tion of bounded delay follows from the remaining conditions enumerated in Chapter 2.

Schneider’s schema assumes that
It~ i < 3

for good clocks p and ¢, where t;, denotes the real time that clock p begins its ith interval
clock (this is condition 4 in Shankar’s presentation). Anyone wishing to use the general-
ized proof to verify the correctness of an implementation must prove that this property
is satisfied by their implementation. For the algorithm presented in reference 2, this is a
nontrivial proof.

The difficulty stems, in part, from the inherent ambiguity in the interpretation of t;,“.
Relating the event to a particular clock time is difficult because it serves as a crossover
point between two interval clocks. The logical clock implemented by the algorithm
undergoes an instantaneous shift in its representation of time. Thus the local clock read-
ings surrounding the time of adjustment may show a particular clock time twice or never.
The event t;,H is determined by the algorithm to occur when IC;(t) = Tlf“; that is, Tp”'I
is the clock time for applying the adjustment ADJ;, = (adj;fl - adj;,). This also means
that t;,“ = icé(TIf“). In an instantaneous adjustment algorithm there are at least two
possibilities:

LT =i+ )R+ T,
2. T7 = (i+ )R+ T" ~ ADJ?,

A more stable frame of reference is needed for bounding the separation of events. Welch
and Lynch (ref. 2) exploit their mechanism for reading remote clocks to provide this frame

17



of reference. Every clock in the system sends a synchronization pulse when its virtual clock
reads §' = iR + S, where S° denotes the first exchange of clock values. Let s; be an
abbreviation for 'L'c’z')(S’ %). If we ignore any implied interpretation of event s;, and just select
values of St which satisfy condition 8, we have sufficient information to prove bounded
delay for an arbitrary algorithm. These results were previously presented in reference 23.

3.1 Bounded Delay Offset

The general proof follows closely an argument given in reference 2. The proof adapted
is that of theorem 4 of reference 2, section 6. We wish to prove for good clocks p and ¢
that

tp —tgl <8
To establish this, we must first prove the following theorem:

Theorem 3.1 (bounded delay offset) For nonfaulty clocks p and q and for i > 0,

(a) Ifi> 1, then |ADJL | < a(B +24)

(b) |sy —sgl <5
Proof: The proof of theorem 3.1 is by induction on i. The base case (i = 0) is trivial;
part (a) is vacuously true and part (b) is a direct consequence of conditions 7 and 5.

By assuming that parts (a) and (b) are true for i, we proceed by showing they hold
for ¢z + 1.

To prove the induction step for theorem 3.1(a), we begin by recognizing that
ADJUEDT! = adiitt — adjp = cfnlp, O3) — IC3 (1)

Because [/ C’;,(t:,“) = 9;,+1(p) (no error in reading own clock), we have an instance of
accuracy preservation:

lefn(p, ©L1) — 657 (p)] < a(X)

All that is required is to show that B + 2A’ substituted for X satisfies the hypotheses of
accuracy preservation.

We need to establish that for good ¢, m,
|05 (¢) — B (m)| < B + 2/
We know from the induction hypothesis that for good clocks p and ¢,
|s;, - sfll < g
By reading error and the induction hypothesis, we get for nonfaulty clocks p and ¢*

(O3 (q) — ICH(EE)) — (5, — sg) < A’

4Recall that in this formulation, values of type time and Clocktime are both promoted to type number.
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We proceed as follows:

10,1 (6) — O (m)]
= [(6,"(6) — 0L (m)) + (ICL(t) — ICH(ti+y)
+ (s = sp) + (sh — sb) + (5%, — )]
< sp— st +1(05 1 (8) — ICH(tth)) — (5%, — sb)]
+ (65 (m) — ICH(t5Th) = (85, — sb,))
< B4 20

We get the last step by substituting ¢ and m for p and g, respectively, in the induction
hypothesis, then by using reading error twice, and by substituting first ¢ for ¢ and then
m for q.

The proof of the induction step for theorem 3.1(b) proceeds as follows. All supporting
lemmas introduced in this section implicitly assume that theorems 3.1(a) and 3.1(b) are
both true for ¢ and that theorem 3.1(a) is true for i + 1. In the presentation of Welch and
Lynch (ref. 2), they introduce a variant of precision enhancement. We restate it here in
the context of the general protocol:

Lemma 3.1.1 For good clocks p and q,

(s = 55) = (AD.J}, — ADJY)| < m(2A + 2, ' + 2A")
Proof: We begin by recognizing that ADJ;, = cfn(p, (MO () — IC;,(t;“ ))) (and sim-
ilarly for ADJ 7). A simple rearrangement of the terms gives us

I(sp, — st) — (ADJ: - ADJY)| = [(ADJ}, — st) — (ADJ;, — sb)|

We would like to use translation invariance to help convert this to an instance of precision
enhancement. However, translation invariance only applies to values of type Clocktime (a

synonym for integer). We need to convert the real values s;) and sfl to integer values while

preserving the inequality. We do this via the integer floor and ceiling functions. Without
loss of generality, assume that (ADJ}, — s3) > (ADJ} — s%). Thus,
(ADJ}, — s},) — (ADJ: ~ s1))|
< |(ADJ,, = [sp]) = (ADJ} — [si])]
= lefalp, (MO (0) — ICH(t) ~ [s3]))
—cfnq, (ALOF (£) — IC3(E1) — [s3])

All that is required is to demonstrate that if

(AEOLTH(0) = ICH () — |55 ]) = ~
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and
i+1 Qg iy
(/\E.(-)qJr (£) — ICq(tq“) — [sq]) =0

they satisfy the hypotheses of precision enhancement.
We know from reading error and the induction hypothesis that
(@5 (6) — ICH(tE™)) — (53 — s)| < A
To satisfy the first hypothesis of precision enhancement, we notice that

(MO (8) — ICH(E) — [sE)(8) = (M0 (0) = ICG (") = EANGT

(O (0) — IC3 () — Lsp)) — (©571(8) = TC4(ty") — EAI
= (@51 (0) - ICH(H) = (Lsp) = 51)

— (O () — ICy(t5) — (Ts41 = s9))l
< 2A 42

Therefore, we can substitute 2A’ + 2 for X to satisfy the first hypothesis of precision
enhancement.

To satisfy the second and third hypotheses, we proceed as follows (the argument pre-
sented is for (A4, 6‘“(@ IC! (t”l) [spj) = ~). We need a value of Y such that

(MO () — ICH(8,) - LsL))(0) — (MO (6) — ICH(5) — st (m)| <Y
We know that

(O (6) - TCH(EH) = [s51)(6) — (A8, () = IO} (™) = Lsp ) ()
= (@) — ICH(EE) — Lsb)) — (O3 (m) — TG}t = Lsp))]
= |05 (0) - 83 (m)|

The argument in theorem 3.1(a) shows that this value is bounded by 3’ +2A’ which is the
desired Y for the remaining hypotheses of precision enhancement. [

Now we bound the separation of icit!(T') and icktI(T) for all T.
Lemma 3.1.2 For good clocks p and q and clock time T,
licit (T — icitH (T)] < 2p(IT — §'| + (8" + 20")) + (20" + 2, + 2A)

Proof: The proof is taken verbatim (with the exception of notational differences) from
reference 2, lemma 10.

Note that

it (T) = ik (T — ADJL) and icyt ' (T) = it (T — ADJ)
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Now

fich (T) ~ et ()|
< ey (T = ADJL) — st — (T - ADJ, ~ §Y)
+Hicy(T = ADJ}) — s} — (T — ADJ!, — §7)|
+(s}, = s5) — (ADJ}, — ADJY)]
The three terms are bounded separately. By corollary 5.3 of bounded drift (condi-
tion 5), we get

licp(T ~ ADJ},) = s, — (T — ADJ}, — S|
< pIT - 8" - ADJ}|
< p(IT = S+ a(F + 2A"))

from theorem 3.1(a) for i + 1. The second term is similarly bounded. Lemma 3.1.1 bounds
the third term. Adding the bounds and simplifying gives the result. ]

This leads to the desired result:

Lemma 3.1.3 For good clocks p and q.,

lsott — st < 2p(R+ a(B' + 2A")) + w(2A + 2.3 + 2Ny < @

Proof: This is simply an instance of lemma 3.1.2 with S**! substituted for T =
This completes the proof of theorem 3.1. Algebraic manipulations on the inequality

20(R+ a8 +20") + m(2A" + 2,8+ 20) < 3

give us an upper bound for R.

3.2 Bounded Delay for Two-Algorithm Schemata

We begin by noticing that both instantaneous adjustment schemata presented at the
beginning of this chapter allow for a simple derivation of 3 that satisfies the condition of
bounded delay (Shankar’s condition 4). Notice that knowledge of the algorithm is required
in order to fully establish this property.

Theorem 3.2 (bounded delay) For nonfaulty clocks p,q employing either of the two
instantaneous adjustment schemata presented, there is a 3 such that,

it — i) < 3

Proof: It is important to remember that = i (Tt = icl’;“(T;H + ADJ}).
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1. When Ti*! = (i + )R+ T°, let 8 = 2p(R — (S —T1%) + &
In this case, since Tt = T, = (i+ 1R+ TO, all that is required is a simple
application of corollary 5.2 and expanding the definition of S¢; that is, S* = iR+ S°.

5 — it < sl — syl +2p((E+ DR+ T0 - §) < 8 +2p(R— (S° - T%)

2. When Ti+! = (i + )R+ T° — ADJ}, let 8= §' — 2p(S° = T)
This case requires the observation that 7:+1 +ADJL =T, +ADJ}, = ((i+1)R+T9).
By substituting (i+1)R+T? for T in lemma 3.1.2 and remembering that S* = iR+S°,
we get

|esr — i < 2p((R - (80 — TO) + (' + 2A")) + (2" + 2,8 + 24')
We know that
20(R + (B + 20")) — 2p(8° = T%) + w(2A" + 2, 8"+ 2A") < ' — 2p(S° — 1Y)
Simple algebra completes the proof of this case.

Condition 7 establishes lt?J — tgl < 8 for both of these schemata. n

This result has no impact on the proofs performed by Shankar. The only difference is
that bounded delay is no longer an assumption. However, it is possible that some bounds
and arguments can be improved.

3.3 EHDM Proofs of Bounded Delay

The EHDM (version 5.2) proofs and supporting definitions and axioms are in the mod-
ules delay, delay2, delay3, and delay4. [ATEX-formatted listings of these modules are in
appendix B. A slightly modified version of Shankar’s module clockassumptions is also
included in appendix A for completeness. Some of the revised constraints presented in
Chapter 2 are in module delay. The most difficult aspect of the proofs was determining a
reasonable predicate to express nonfaulty clocks. Since we would like to express transient-
fault recovery in the theory, it is necessary to avoid the axiom correct _closed from Shankar’s
module clockassumptions. This axiom has not yet been removed from the general theory.
None of the proofs of bounded delay offset depend on it, however. The notion of nonfaulty
clocks is expressed by the following from module delay:

correct during: function[process, time, time — bool] =
(Ap,t,s:t<sA(Vt:t<tiAt1 <8D correct(p, t1)))

wpred: functionfevent — function[process — bool]]

rpred: function[event — function{process — bool]]

wvr_pred: function[event — function|process — bool]] =

(Ai: (Ap: wpred(i)(p) V rpred(i)(p)))
wpred_ax: Axiom count(wpred(i), N) > N — F

wpred_correct: Axiom wpred(i)(p) D correct_during(p, t;,t;,“)
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wpred_preceding: Axiom wpred(z + 1)(p) D wpred(7)(p) V rpred(i)(p)
wpred_rpred_disjoint: Axiom —(wpred(i)(p) A rpred(i)(p))

wpred_bridge: Axiom
wvr_pred(i)(p) A correct _during(p, AR tli,”) D wpred(7 + 1)(p)

Also, module delay3 states the following axiom:

recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(i)(p) A correct during(p, tor £ 2) A wpred(i + 1)(q)
b 'Szz‘)H _ StiZH‘ < 6’

There are two predicates defined, wpred and rpred. Wopred is used to denote a working
clock; that is, it is not faulty and is in the proper state. Rpred denotes a process that
is not faulty but has not yet recovered proper state information. Correct is a predicate
taken from Shankar’s proof that states whether a clock is fault free at a particular in-
stance of real time. Correct_during is used to denote correctness of a clock over an interval
of time. In order to reason about transient recovery it is necessary to provide an rpred
that satisfies these relationships. If we do not plan on establishing transient recovery, let
rpred(i) = (Ap : false). In this case, axioms recovery_lemma and wpred_rpred_disjoint arc
vacuously true, and the remaining axioms are analogous to Shankar's correct closed. This
reduces to a system in which the only correct clocks are those that have been so since the
beginning of the protocol. This is precisely what should be true if no recovery is possible.

The restated property of bounded drift is captured by axioms RATE 1 and RATE 2.
The new constraints for bounded interval are rts_new_1 and rts_new_2. Bounded delay
initialization is expressed by bnd _delay_init. The third clause of the new reading error is
reading_error3. The other two clauses are not used in this proof. An additional assump-
tion not included in the constraints given in Chapter 2 is that there is no error in reading
your own clock. This is captured by read_self. All these can be found in module delay.
In addition, a few assumptions were included to define interrelationships of some of the
constants required by the theory.

The statement of theorem 3.1 is bnd _delay_offset in module delay2. The main step
of the inductive proof for theorem 3.1(a) is captured by good _Readclock, which with ac-
curacy preservation, was sufficient to establish bnd _delay offset_ind_a. Theorem 3.1(b)
is more involved. Lemma delay_prec_enh in module delay? is the machine-checked ver-
sion of lemma 3.1.1. Module delay3 contains the remaining proofs for theorem 3.1(b).
Lemma 3.1.2 is presented as bound _future. The first two terms in the proof are bounded
by lemma bound_futurel; the third, by delay_prec_enh. Lemma bound_FIXTIME completes
the proof.

Module delay4 contains the proofs that each of the proposed substitutions for 3 satisfy

the condition of bounded delay. Option 1 is captured by optionl _bounded_delay, and op-
tion 2 is expressed by option2 _bounded_delay. The EnpMm proof chain status, demonstrating
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that all proof obligations have been met, can also be found in appendix B. The task of
mechanically verifying the proofs also forced some revisions to some hand proofs in an
earlier draft of this paper. The errors revealed by the mechanical proof included invalid
substitution of reals for integers and arithmetic sign errors.

Module new_basics restates Shankar'’s condition 8 as rtsO_new and rtsl_new with the
substitutions suggested in section 2.9.3 for Tymaer and Tmin. These substitutions are proven
to bound t;,“ - ti, for each of the proposed algorithm schemata in module rmax_rmin.
The revised statement of condition 9 can also be found in module new _basics; it is ax-
iom nonoverlap. The modules new basics and rmax_rmin provide the foundations for a
mechanically checked version of the informal proof of theorem 2.1 given in appendix A.

3.4 New Theory Obligations

This revision to the theory leaves us with a set of conditions that are much easier
to satisfy for a particular implementation. Establishing that an implementation is an
instance of this extended theory requires the following obligations:

1. Prove the properties of translation invariance, precision enhancement, and accuracy
preservation for the chosen convergence function

2. Derive bounds for reading error from the implementation (condition 6, clauses 1
and 3)

3. Solve the derived inequalities listed at the end of Chapter 2 with values determined
from the implementation and properties of the convergence function

4. Satisfy the conditions of bounded interval and nonoverlap by using the derived
values.

5. Identify data structures in the implementation that correspond to the algebraic
definitions of clocks; show that the structures used in the implementation satisfy the
definitions

6. Show that the implementation correctly executes an instance of the following algo-
rithm schema:

i+—0
do forever {
exchange clock values
determine adjustment for this interval
determine T%*! (local time to apply correction)
when ICi(t) = T**! apply correction; i « i+ 1}

7. Provide a mechanism for establishing initial synchronization (|t?, - t2| < g —2p(S°

— T%)); ensure that B is as small as possible within the constraints of the aforemen-
tioned inequalities
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8. If the protocol does not behave in the manner of either instantaneous adjustment
option presented, it will be necessary to use another means to establish Vi It;j —t;| <
B from Vi : [s}, — s} < 3

Requirement 1 is established in Chapter 4; requirements 2, 3, 4, 5, and 6 are demonstrated
for an abstract design in Chapter 5; and requirement 7 is established in Chapter 6. The
inequalities used in satisfying requirement 3 are the ones developed in the course of this
work, even though the proof has not yet been subjected to mechanical verification. The
proof sketch in appendix A is sufficient for the current development. Requirement 8 is
trivially satisfied because the design described herein uses one of the two verified schemata.
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Chapter 4

Fault-Tolerant Midpoint as an
Instance of Schneider’s Schema

The convergence function selected for the design described in Chapter 5 is the fault-
tolerant midpoint used by Welch and Lynch in reference 2. The function consists of dis-
carding the F largest and F smallest clock readings®, and then determining the midpoint
of the range of the remaining readings. Its formal definition is

Orin) + O(N—F)‘\
2

cfnvmip(p,8) = t

where 6,,) returns the mth largest element in 6. This formulation of the convergence
function is different from that used in reference 2. A proof of equality between the two
formulations is not needed because it is shown that this formulation satisfies the properties
required by Schneider’s paradigm. For this function to make sense, we want the number
of clocks in the system to be greater than twice the number of faults, N > 2F + 1. In
order to complete the proofs, however, we need the stronger assumption that N > 3F +1.
Dolev, Halpern, and Strong have proven that clock synchronization is impossible (without
authentication) if there are fewer than 3F +1 clocks. (See ref. 3.) Consider a system with
3F clocks. If F clocks are faulty, then it is possible for two clusters of nonfaulty clocks
to form, each of size F. Label the clusters C; and C,. Without loss of generality, assume
that the clocks in C,; are faster than the clocks in Cs,. In addition, the remaining F clocks
are faulty and are in cluster Cp. If the clocks in Cr behave in a manner such that they
all appear to be fast to the clocks in C,; and slow to the clocks in Cs, clocks in each of the
clusters will only use readings from other clocks within their own cluster. Nothing will
prevent the two clusters from drifting farther apart. The one additional clock ensures that
for any pair of good clocks, the ranges of the readings used in the convergence function
overlap.

This section presents proofs that cfnaipn(p, 6) satisfies the properties required by
Schneider’s theory. The EHDM proofs are presented in appendix C and assume that a
deterministic sorting algorithm arranges the array of clock readings.

5Remember that condition 1 defines F' to be the maximum nmunber of faults tolerated.
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The properties presented in this chapter are applicable for any clock synchronization
protocol that employs the fault-tolerant midpoint convergence function. All that is re-
quired for a verified implementation is a proof that the function is correctly implemented
and proofs that the other conditions have been satisfied. The weak forms of precision
enhancement and accuracy preservation are used to simplify the arguments for transient
recovery given in Chapter 6.

4.1 Translation Invariance

Recall that translation invariance states that the value obtained by adding Clocktime X
to the result of the convergence function should be the same as adding X to each of the
clock readings used in evaluating the convergence function. The condition is restated here
for easy reference exactly as presented in Chapter 2.

Condition 2 (translation invariance) For any function 6 mapping clocks to clock
values,

cf(p, (An : 6(n) + X)) = cfn(p,0) + X

Translation invariance is evident by noticing that for all m,
(/\l : 0(1) + X)(m) = H(m) + X

and

(Opi1) + X) + Bn—r) + X)J _ [H(FH) + 9(N—F)J e
2 N 2

4.2 Precision Enhancement

As mentioned in Chapter 2, precision enhancement is a formalization of the concept
that, after executing the convergence function, the values of interest should be close to-
gether. The proofs do not depend on p and q being in C; therefore, the precondition was
removed for the following weakened restatement of precision enhancement:

Condition 3 (precision enhancement) Given any subset C of the N clocks with
IC| > N — F, then for any readings vy and 6 satisfying the conditions

1. ForanylinC, |[v(1) -0(l)| < X
2. Foranyl, min C, |y(l) —y(m)| <Y
3. For any l, m in C, |§(l) — §(m)| <Y

there is a bound m(X,Y) such that

'Cfn(p,'Y) - Cf”'(‘]ag)l < W(Xa Y)
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Theorem 4.1 Precision enhancement is satisfied for cfnprp(p,9) if

cxn =L+ x]

One characteristic of ¢fnarrp(p, 9) is that it is possible for it to use readings from faulty
clocks. If this occurs, we know that such readings are bounded by readings from good
clocks. The next few lemmas establish this fact. To prove these lemmas, it was expedient
to develop a pigeonhole principle.

Lemma 4.1.1 (Pigeonhole Principle) If N is the number of clocks in the system and
C, and Co are subsets of these N clocks,
|Ci] +|C2l 2 N+ kD ICyNCy| 2k

This principle greatly simplifies the existence proofs required to establish the next two
lemmas. First, we establish that the values used in computing the convergence function
are bounded by readings from good clocks.

Lemma 4.1.2 Given any subset C of the N clocks with |C| > N — F and any reading 0,
there exist p,q € C such that

0(p) > 8(p11) and Ov-F) 2 8(q)
Proof: By dcfinition, |{p : 6(p) > 8pin} = F +1 (similarly, |{g : On_p) > (@)} =

F +1). The conclusion follows immediately from the pigeonhole principle. ]

Now we introduce a lemma that allows us to relate values from two different readings
to the same good clock.

Lemma 4.1.3 Given any subset C of the N clocks with |C| 2 N — F and readings 0
and 7, there exist a, p € C such that

8(p) > O n—ry and Vi) 2 Y(P)

Proof: With N > 3F + 1, we can apply the pigeonhole principle twice: first. to establish
that |{p: 0(p) = On-p} NC| = F+1 and second, to establish the conclusion. L]

An immediate consequence of the preceding lemma is that the readings used in computing
cfaprrp(p, 8) bound a reading from a good clock.

The next lemma introduces a useful fact for bounding the difference between good
clock values from different readings.

Lemma 4.1.4 Given any subset C of the N clocks and clock readings 6 and ¥ such that
for any [ in C, the bound |0(1) = V()| < X holds, for all p,q € C,

8(p) > 6(q) A(q) = Y(p) D 16(p) — Mgl < X
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Proof: By cases,
L 180(p) 2 7(q), then [8(p) ~ ¥(q)| < 16(p) — V(p)| < X
2. £0(p) < 7(q), then [6(p) — Y(q)] < 10(g) — V(g)| < X .
From this lemma, we can establish the following lemma:
Lemma 4.1.5 Given any subset C' of the N clocks and clock readings 6 and 7V such that
for any l in C, the bound 0(1) = Y(1)] < X holds, there exist P,q € C such that
0(p) > 0511
Y(q) > Yran
16(p) —7(g) < X
Proof: We know from lemma 4.1.2 that there are p;.¢; € C that satisfy the first two
conjuncts of the conclusion. Three cases to consider are
L IfY(p1) > Y(q1), let p=g = D
2. It 0(q1) > 0(p1), let p=q = ¢

3. Otherwise, we have satisfied the hypotheses for lemma 4.1.4; therefore, we let P =
and g = ¢ =

We are now able to establish precision enhancement for ¢fnarip(p, ) (theorem 4.1).
Proof: Without loss of generality, assume cfanip(p,v) > cfnarrn(q, 8):

lefaain(p,7Y) ~ cfrarrp(q, 0)
[7(F+1) + 7(N—F)J B lO(FJrl) + 9(NF)J
2 2
’7(F+1) +Vvor) = (Opg) + H(ALF))W
P27 W) VU TIN-F))|
2

<
Thus we need to show that
17(F+1) + 7)(’N_F) - (0(F+1) + B(N—F))' S Y + 2X

By choosing good clocks P, q from lemma 4.1.5, p1 from lemma 4.1.3, and q1 from the right
conjunct of lemma 4.1.2, we establish

Yeri) + YN-F) = Ors1) + O n )
< @) +7(m) - 8(m) - 6(qy)]
() + (6(p) — 8(p)) + Y(p1) ~ 6(py) — O(q1)]

< 10(p) = 6(g)l + (@) = 6()| + V(1) = ()]
< Y+2Xx
(by hypotheses and lemma 4.1.5). [
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4.3 Accuracy Preservation

Recall that accuracy preservation formalizes the notion that there should be a bound
on the amount of correction applied in any synchronization interval. The proof here uses
the weak form of accuracy preservation. The bound holds even if p is not in C.

Condition 4 (accuracy preservation) Given any subset C of the N clocks withT
ICl > N - F and clock readings @ such that, for any ! and m in C, the bound
|0(1) — 8(m)| < X holds, there is a bound a(X) such that for any q in C,

|efn(p, 6) — 0(g)] < a(X)
L |

Theorem 4.2 Accuracy preservation is satisfied for cfamrp(p,9) alX)=X.

Proof: Begin by selecting p1 and q1 using lemma 4.1.2. Clearly, 0(p1) > cfrmrp(p,9)
and cfap1p(p,8) > 8(q1). Two cases to consider are

1. 1£ 6(q) < cfemrp(p,0), then efnarn(p,6) = 0(q)| < 16(m) —0(@)l £ X
9. £ 8(q) > cfaprrp(p,6), then |cfnarrn(p,6) — 0(q)| < 16(q1) — (@)l < X -

4.4 EupMm Proofs of Convergence Properties

This section presents the important details of the EHDM proofs that cfarrn(p,8)
satisfies the convergence properties. In general, the proofs closely follow the presentation
given previously. The EnbM modules used in this effort are given in appendix C. Support-
ing proofs, including the EnbpM proof of the pigeonhole principle, are given in appendix D.

One underlying assumption for these proofs is that N > 3F + 1, which is a well-
known requirement for systems to achieve Byzantine fault tolerance without requiring
authentication (ref. 3). The statement of this assumption is axiom No_authentication in
module ft_mid_assume. As an experiment, this assumption was weakened to N >2F + 1.
The only proof corrupted was that of lemma good_between in module mid3. This corre-
sponds to lemma 4.1.3. Lemma 4.1.3 is central to the proof of precision enhancement. It
establishes that for any pair of nonfaulty clocks, there is at least one reading from the
same good clock in the range of the readings selected for computation of the convergence
function. This prevents a scenario in which two or more clusters of good clocks continue
to drift apart because the values used in the convergence function for any two good clocks
are guaranteed to overlap.

Another assumption added for this effort states that the array of clock readings can
be sorted. Additionally, a few properties one would expect to be true of a sorted array
were assumed. These additional properties used in the EHnDM proofs are (from module
clocksort)
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funsort_ax: Axiom
i < jAJG <N DI(funsort(d)(z)) > I(funsort(¥)(5))

funsort_trans_inv: Axiom
k< N D (J(funsort( A g : 9(q) + X)(k)) = d(funsort(9)(k)))

cnt_sort_geq: Axiom
k< N D count((Ap:d(p) > I(funsort(9)(k))), N) > k

cnt_sort_leq: Axiom
k < N D count((Ap: I(funsort(9)(k)) > 9(p)),N) > N —k + 1

Appendix C contains the proof chain analysis for the three properties. The proof for
translation invariance is in module mid, precision enhancement is in mid3, and accuracy
preservation is in mid4.

A number of lemmas were added to (and proven in) module countmod. The most
important of these is the aforementioned pigeonhole principle. In addition,
lemma count_complement was moved from Shankar’s module ica3 to countmod. Shankar’s
complete proof was rerun after the changes to ensure that nothing was inadvertently de-
stroyed. Basic manipulations involving the integer floor and ceiling functions are presented
in module floor_ceil. In addition, the weakened versions of accuracy preservation and trans-
lation invariance were added to module clockassumptions. The restatements are axioms
accuracy_preservation_recovery_ax and precision_enhancement_recovery_ax, respectively. The
revised formulations imply the original formulation, but are more flexible for reasoning
about recovery from transient faults because they do not require that the process eval-
uating the convergence function be part of the collection of working clocks. The proofs
that cfnarrp(p,0) satisfies these properties were performed with respect to the revised
formulation. The original formulation of the convergence function properties is retained
in the theory because not all convergence functions satisfy the weakened formulas.

Chapter 5 presents a hardware design of a clock synchronization system that uses

the fault-tolerant midpoint convergence function. The design is shown to satisfy the re-
maining constraints of the theory.
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Chapter 5

Design of Clock Synchronization
System

This chapter describes a design of a fault-tolerant clock synchronization circuit that
satisfies the constraints of the theory. This design assumes that the network of clocks
is completely connected. Section 5.1 presents an informal description of the design, and
section 5.2 demonstrates that the design meets requirements 2 through 6 from section 3.4.

5.1 Description of Design

As in other synchronization algorithms, this one consists of an infinite sequence of
synchronization intervals ¢ for each clock p; each interval is of duration R + ADJ;,. All
good clocks are assumed to maintain an index of the current interval (a simple counter is
sufficient, provided that all good channels start the counter in the same interval). Further-
more, the assumption is made that the network of clocks contains a sufficient number of
nonfaulty clocks and that the system is already synchronized. In other words. the design
described in this chapter preserves the synchronization of the redundant clocks. The issue
of achieving initial synchronization is addressed in Chapter 6. The major concern is when
to begin the next interval; this consists of both determining the amount of the adjustment
and when to apply it. For this, we require readings of the other clocks in the system and a
suitable convergence function. As stated in Chapter 4, the selected convergence function
is the fault-tolerant midpoint.

In order to evaluate the convergence function to determine the (i + 1)th interval clock,
clock p needs an estimate of the other clocks when local time is T,f“- All clocks partici-
pating in the protocol know to send a synchronization signal when they are Q ticks into
the current interval:% for example, when LCZ,(t) = @, where LC is a counter measuring
elapsed time since the beginning of the current interval. Our estimate, (—);)'”, of other
clocks is

0 (q) = Ti! +(Q — LCh(tyy))

5This is actually a simplification for the purpose of presentation. Clock p sends its signal so that it will
be received at the remote clock when LC3(t) = Q.
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where t,,, is the time when p recognizes the signal from ¢. The value Q — LC;,(qu) gives
the difference between when the local clock p expected the signal and when it observed
a signal from ¢. The reading is taken in such a way that simply adding the value to the
current local clock time gives an estimate of the other clock’s reading at that instant. It
is not important that Q be near the end of the interval. For this system, we assume the
drift rate p of a good clock is less than 10~°; this value corresponds to the drift rate of
commercially available oscillators. By selecting R to be <107 ticks (a synchronization
interval of 1 msec for a 10-MHz clock), the maximum added error of 2pR < 0.2 caused by
clock drift does not appreciably alter the quality of our estimate of a remote clock’s value.
In this system, p always receives a signal from itself when LC;)(t) = (Q; therefore, no error
is made in reading its own clock.

Chapter 3 presents two options for determining when to apply the adjustment. This
design employs the second option, namely that

i+ 1 . 0 i
L =(i+ )R+ T" — ADJ}

Recalling that ¢t = i, (Tit!) = et (T + AD.J}) makes it easy to determine from

the algebraic clock definitions given in section 2.1 and the above expression, that
cfrarp(p. ©,71) = IC (M) = (1 + DR+ T

Since TV = 0 in this design, we just need to ensure that efmarrp(p, (—);,“) = (i+1)R. Using
translation invariance and this definition for 6;,“ gives

cfaarip(p. (Ag-Op  (q) = T2M1)) = (i+ DR - TH = ADJ,
Since O} (q) — T =(Q - LC}(tpq)). we have

ADJ} = cfnprrp(p, (Mq(Q — LC(tpe))))

In Chapter 4, the fault-tolerant midpoint convergence function was defined as follows:

Opi1y + 9(N~F)J
2

cfnarip(p,0) = [

If we are able to sclect the (N — F)th and (F + 1)th readings, computing this function
in hardware consists of a simple addition followed by an arithmetic shift right.” All that
remains is to determine the appropriate readings to use. By assumption, there are a suf-
ficient number (N — F') of nonfaulty synchronized clocks participating in the protocol.
Therefore, we know that we will observe at least N — F pulses during the synchronization
interval. Since @ is fixed and LC does not decrease during the interval, the readings
(AqQ — LC;;(tpq)) are sorted into decreasing order by arrival time. Suppose ¢,, is when the
(F + 1)th pulse is recognized, then Q — LC}(tpq) must be the (F + 1)th largest reading.
A similar argument applies to the (N — F)th pulse arrival. A pulse counter gives us the

"An arithmetic shift right of a two's complement value preserves the sign bit and truncates the least
significant. bit.
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Figure 5.1: Informal block model of clock synchronization circuit.

necessary information to select appropriate readings for the convergence function. Once
N — F pulses have been observed, both the magnitude and time of adjustment can be
determined. At this point, the circuit just waits until LC’;(t) =R+ ADJ;, to begin the
next interval.

Figure 5.1 presents an informal block model of the clock synchronization circuit. The
circuit consists of the following components:®

N pulse recognizers (only one pulse per clock is recognized in any given interval)
Pulse counter (triggers events based on pulse arrivals)

Local counter LC (measures elapsed time since beginning of current interval)
Interval counter (contains the index 7 of the current interval)

One adder for computing the value —(Q — LC}(tpq))

One register each for storing —f(p,1) and —ON-F)

Adder for computing the sum of these two registers

A divide-by-2 component (arithmetic shift right)

The pulses are already sorted by arrival time, therefore, using a pulse counter is natural
to select the time stamp of the (F + 1)th and the (N — F)th pulses for the computation

31n order to simplify the design, the circnit computes —ADJ}, and then subtracts this value when
applying the adjustment. Thus the readings captured are —@ rather than 6.
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of the convergence function. As stated previously, all that is required is the difference
between the local and remote clocks. Let

0= (2.0, (q) — T3H)

When the (F + 1)th (N — F)th signal is observed, register —b(F+1) (=0 n_Fy) is clocked,
saving the value —(Q—LC;(t)). After N~ F signals have been observed, the multiplexor se-
lects the computed convergence function instead of . When LCL(t)—(~cfnpip(p, () =
R, it is time to begin the (i + 1)th interval. To do this, all that is required is to increment i
and reset LC to 0. The pulse recognizers, multiplexor select, and registers are also reset
at this time.

5.2 Theory Obligations

The requirements referred to in this section are from the list presented in section 3.4.
Since this design was developed, in part, from the algebraic definitions given in section 2.1,
it is relatively easy to see that it meets the necessary definitions as specified by require-
ment 5. The interval clock is defined as follows:

IC,(t) = iR+ LCi(t)
From the description of the design given, we know that
ICH (t) = ICL(t) + ADJ;

with LCg(t) corresponding to PCy(t) as described in Chapter 2. The only distinction is
that, in the implementation, LC is repeatedly reset. Even so, it is the primary mecha-
nism for marking the passage of time. Clearly, this implementation of IC ensures that
this design provides a correct VC. The time reference provided to the local processing
elements is the pair (i, LC,(t)) with the expected interpretation that the current elapsed
time since the beginning of the protocol is iR + LCL(1).

This circuit cycles through the following states:

1. From LC;(t) = 0 until the (N — F)th pulse is received, it determines the readings

needed for the convergence function
2. It uses the readings to compute the adjustment ADJ;;
3. When LC;)(t) + ADJ;, = R, it applies the correction by resetting for the next interval

In parallel with this sequence of states, when LC';,(t) = (@, it transmits its synchro-
nization signal to the other clocks in the system. This algorithm is clearly an instance
of the general algorithm schema presented as requirement 6 (section 3.4). State 1, in
conjunction with the transmission of the synchronization signal, implements the exchange
of clock values. State 2 determines both the adjustment for this interval and the time of
application. State 3 applies the correction at the appropriate time.
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Requirement 2 demands a demonstration that the mechanism for exchanging clock
values introduces at most a small error to the readings of a remote clock. The best that
can be achieved in practice for the first clause of condition 6 is for A to equal 1 tick.
The third clause, however, includes real-time separation and a possible value for A’ of
approximately 0.5 tick. We assume these values for the remainder of this paper. A hard-
ware realization of the above abstract design with estimates of reading error equivalent
to these is presented in reference 24. These bounds have not been established formally.
Preliminary research, which may enable formal derivation of such bounds, can be found
in reference 25.

With these values for reading error, we can now solve the inequalitics presented at the
end of Chapter 2. The inequalities used for this presentation are those from the informal
proof of theorem 2.1 given in appendix A. These inequalities are

1. 4prmae + 7([2A + 2], |3 +20]) <@
2. [(1 + p)ﬁ’ + prrma.J < )
3. a(|f + 20 )+ A+ 28] +1 <6

For the first inequality, we need to find the smallest value of 4’ that satisfies the
inequality. The bound ' can be represented as the sum of an integer and a real between
0 and 1. Let the integer part be B and the rcal part be b. We know that pR < 0.1 and
that 7ma, is not significantly more than R. Therefore, we can let b = 4pryq. = 0.4 and
reduce the inequality to the following form:

(2N +2], 8 + 20|}y < B

The estimate for A’ is ~ 0.5 < 1—b/2, therefore with |2A" +2] =3 and |3 +2A'| = B+1.
Using the 7 established for cfnarrp(p, 0) in Chapter 4 gives

B+1
3+ |75

B

The smallest valuc of B that satisfies this inequality is 7, therefore, the above circuit can
maintain a value of 3 that is &~ 7.4 ticks. By using this value in the second inequality,
we see that 6 > 8. Because « is the identity function for c¢fnprrp(p, @) and A =1, we get
& > 11 ticks from the third inequality. The bound from the third inequality does not seem
tight, but it is the best proven result we have. By using these numbers with a clock rate of
10 MHz, this circuit will synchronize the redundant clocks to within about 1 psec. Since
the frame length for most flight control systems is on the order of 50 msec, this circuit
provides tight synchronization with negligible overhead.

All that remains in this chapter is to show that this design satisfies requirement 4. This
consists of satisfying conditions 8 and 9. We know that a(3 +2A’) < 9 and that T = 0.
We can satisfy condition 8 by selecting 59 such that 9 < S" < R—9. Since R = 10*, this
should be no problem. For simplicity, let S0 = Q. Also, since R > (1+p)8+ a(B +247),
condition 9 is easily met. Requirement 7, achieving initial synchronization, is addressed
in the next chapter.
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Chapter 6

Initialization and Transient
Recovery

This chapter establishes that the design presented in Chapter 5 meets the one remain-
ing requirement of the list given in section 3.4. This requirement is to satisfy condition 7.
bounded delay initialization. Establishing this requirement in the absence of faults is suf-
ficient because initialization is only required at system startup. A fault encountered at
startup is not critical and can be remedied by repairing the failed component. However,
a guaranteed automatic mechanism that establishes initial synchronization would provide
a mechanism for recovery from correlated transient failures. Therefore, the arguments
given for initial synchronization attempt to address behavior in the presence of faults also.
These arguments are still in an carly stage of development and are therefore presented
informally unlike the proofs in earlier chapters.

Section 6.2 addresses guaranteed recovery from a bounded number of transient faults.
The EHDM theory presented in section 3.3 presents sufficient conditions to establish
theorem 3.1 while recovering from transient faults. Section 6.2 restates these conditions
and adds a few more that may be necessary to mechanically prove theorem 2.1 and still
allow transient recovery. Section 6.2 also demonstrates that the design presented in Chap-
ter 5 meets the requirements of these transient recovery conditions.

A number of clock synchronization protocols include mechanisms to achieve initializa-
tion and transient recovery. An implicit assumption in all these approaches is a diagnosis
mechanism that triggers the initialization or recovery action. One goal of this design is
that these functions happen automatically by virtue of the normal operation of the syn-
chronization algorithm. It appears that the fault-tolerant midpoint cannot be modified to
ensure automatic initialization. However, with slight modification, the fault-tolerant mid-
point algorithm allows for automatic recovery from transient faults without a diagnostic
action.
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6.1 Initial Synchronization

If we can get into a state that satisfies the requirements for precision enhancement
(condition 3, repeated here for easy reference):

Condition 3 (precision enhancement) Given any subset C of the N clocks with
|C| > N — F and clocks p and q in C, then for any readings v and 0 satisfying the
conditions

1. Foranyl in C, |y(€) —0(0)| < X
2. Foranyl, m in C, |y(£) —y(m)| <Y
3. Foranyl, minC,|0(£) —0(m)| <Y

there is a bound 7w (X,Y) such that

lefr(p, ) — cfnlg,0)] < m(X,Y)

where Y < |Bread +2A'] and X = |2A’ +2)°, then a synchronization system using the
design presented in Chapter 5 will converge to the point where |32 - sg| < @' in approx-
imately log,(Y) intervals. Byzantine agreement is then required to establish a consis-
tent interval counter. (For the purposes of this discussion, it is assumed that a verified
mechanism for achieving Byzantine agreement exists. Examples of such mechanisms can
be found in refs. 26 and 27.) The clocks must reach a state satisfying the above con-
straints. Clearly, we would like Bread to be as large as possible. To be conservative, we
set Bread = (min(Q, R — Q) — (|8 +24']))/(1 + p). Figure 6.1 illustrates the relevant
phases in a synchronization interval. If the clocks all transmit their synchronization pulses
within SBread of each other, the clock readings will satisfy the constraints listed above. By
letting Q = R/2, we get the largest possible symmetric window for observing the other
clocks. However, more appropriate settings for @ may exist.

R—ADJ}
d——mmmmm e mmEmm e m e m—m— -~ - - - — === >
l. __________ Q ...
| ’T | Ve,
-t - Pt mmmm— = — === == - —— == m—m— =~ = >
Q - ﬁread 6read /Bread

Figure 6.1: Key parts of synchronization interval.

This condition is satisfied when for p, g € C, [s5 — $4| < 3reaq- During initialization, ¢ = 0.
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6.1.1 Mechanisms for Initialization

In order to ensure that we reach a state that satisfies these requirements, it is necessary
to identify possible states that violate these requirements. Such states would happen
because of the behavior of clocks prior to the time that enough good clocks are running.
In previous cases, we knew we had a set C of good clocks with |C| > N — F. This means
a sufficient number of clock readings were available to resolve O(Fy1) and 6 F). This
may not be true during initialization. We need to determine a course of action when we
do not observe N — F clocks. Two plausible options are as follows:

Assumed perfection — pretend all clocks are observed to be in perfect synchrony

End of interval — pretend that unobserved clocks are observed at the end of the syn-
chronization interval; i.e., LC’;(tpq) — @ = R — Q; compute the correction based on

this value

The first option is simple to implement because no correction is necessary. When LC = R,
set both i and LC to 0, and reset the circuit for the next interval. To implement the second
option, perform the following action when LC = R: if fewer than N — F (F +1) signals are
observed, then enable register —O(NvF)(-B(FH)). This causes the unobserved readings to
be (R—Q) which is equivalent to observing the pulse at the end of an interval of duration R.

We discuss these two possibilities with respect to a four-clock system. The argu-
ments for the general case are similar, but are combinatorially more complicated. We
only consider cases in which at least one pair of clocks is separated by more than Bread-
Otherwise, the conditions enumerated would be satisfied.

6.1.1.1 Assumed Perfection

For assumed perfection, all operational clocks transmit their pulse within (1 + p)R/2
of every other operational clock. We present one scenario consisting of four nonfaulty
clocks to demonstrate that this approach does not work. At least one pair of clocks is
separated by more than Fea.q. A real implementation needs a certain amount of time to
reset for the next interval; therefore, there is a short period of time z at the end of an
interval where signals will be missed. This enables a pathological case that can prevent
a clock from participating in the protocol, even if no faults are present. If two clocks
are separated by (R — Q) — z, only one of the two clocks is able to read the other. If
additional clocks that are synchronous with the hidden clock are added, they too will be
hidden. Figure 6.2 illustrates a four-clock system caught in this pathological scenario.
The scale is exaggerated to clearly depict the window z in which signals from other clocks
cannot be observed. Typically, this window is quite small with respect to the length
of the synchronization interval. In this figure, clock a never sees the other clocks in
the system, and therefore remains unsynchronized, even though it is not faulty. There
are a number of options for remedying this deficiency, but all result in more difficult
arguments for demonstrating recovery from transient faults. The presence of this window
of invisibility is unfortunate, because it invalidates a simple probabilistic proof that this
approach guarantees initial synchronization. Although the illustration shows Q = R/2, a
similar pathological scenario exists for any setting of ().
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Figure 6.2: Pathological scenario—assumed perfection.

6.1.1.2 End of Interval

The end of interval approach is an attempt to avoid the pathological case illustrated
in figure 6.2. We begin by considering the cases where only two clocks are actively partic-
ipating. Assume for the sake of this discussion that Q = R/2 {to maximize Bread). There
are two possibilities—the synchronization pulses are either separated by more than R/2
or less than R/2. The two cases are illustrated in figure 6.3. In case 1, each clock com-
putes the maximum adjustment of R/2 and transmits a pulse every 3R/2 ticks. In case 2,
VC, computes an adjustment of R/4 and transmits a pulse every 5R/4 ticks, whereas
VC, computes an adjustment between R/4 and R/2 and converges to a point where it
transmits a pulse every bR/4 ticks and is synchronized with VCp. If we add a third clock
to case 1, it must be within R/2 of at least one of the two clocks. If it is within R/2 of
both, it will pull the two clocks together quickly. Otherwise, the pair within R/2 of each
other will act as if they are the only two clocks in the system and will converge to each
other in the manner of case 2. Since two clocks have an interval length of 5R/4, and the
third has an interval length of 3R/2, the three clocks will shortly reach a point where they
are within Bieaq of each other. This argument also covers the case where we add a third
clock to case 2. Once the three nonfaulty clocks are synchronized, we can add a fourth
clock and use the transient recovery arguments presented in section 6.2 to ensure that it
joins the ensemble of clocks. This provides us with a sound mechanism to ensure initial
synchronization in the absence of failed clocks; we just power the clocks in order with
enough elapsed time between clocks to ensure that they have stabilized. This mechanism
is sufficient to satisfy the initialization requirement but does not address reinitialization
due to the occurrence of correlated transient failures.

Unfortunately, if we begin with four clocks participating in the initialization scheme,
a pathological scenario arises. This scenario is illustrated in figure 6.4. Clocks VC, and
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VCy are synchronized with each other in the manner of case 2 of figure 6.3: likewise. V.
and VCy are synchronized. The two pairs are not synchronized with each other. This
illustrates that even with no faulty clocks, the system may converge to a 2-2 split: two
pairs synchronized with each other but not with the other pair. Once again, values for Q
other than R/2 were explored; in cach casc a 2-2 split was discovered. The next section
proposes a means to avoid this pathological case, while preserving the existing means for
achieving initial synchronization and transient recovery.

L 4 VCy

Case 1: |sq — sp| > R/2

4 4 Va,
Case 2: |s, — 5] < R/2

Figure 6.3: End of interval initialization.

6.1.1.3 End of Interval—Time-Out

Inspection of figure 6.4 suggests that if any of the clocks were to arbitrarily decide not
to compute any adjustment, the immediately following interval would have a collection of
three clocks within /3,.aq of each other, as shown in figure 6.5. When clock b decides not
to compute any adjustment, it shifts to a point where its pulse is within B...q of ¢ and d.
Here the algorithm takes over, and the three values converge. Figure 6.5 illustrates the
fault-free case. If a were faulty, it could delay convergence by at most logs(Fread). Clock a
is also brought into the fold because of the transient recovery process. This process is
explained in more detail in section 6.2. All that remains is to provide a means for the
clocks not to apply any adjustment when such action is necessary.

Suppose each clock maintains a count of the number of elapsed intervals since it has
observed N — F pulses. When this count reaches 8, for example, it is reasonably safe
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Figure 6.4: Pathological end of interval initialization.
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Figure 6.5: End of interval initialization-—time-out.
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to assume that either fewer than N — F clocks are active or the system is caught in the
pathological scenario illustrated in figure 6.4. In either case, choosing to apply no correc-
tion for one interval does no harm. Once this time-out expires, it is important to reset
the counter and switch back immediately to the end of interval mode. This prevents the
system from falling into the pathological situation presented in figure 6.2.

Now that we have a consistent mechanism for automatically initializing a collection
of good clocks, we need to explore how a faulty clock could affect this procedure. First
we note that figure 6.4 shows the only possible pathological scenario. Consider that an
ensemble of unsynchronized clocks must have at least one pair separated by more than
Bread. otherwise the properties of precision enhancement force the system to synchronize.
In a collection of three clocks, at least one pair must be within Bread; figure 6.3 shows that
in the absence of other readings, a pair within Bread Will synchronize to each other. The
only way a fourth clock can be added to prevent system convergence is the pathological
case in figure 6.4. If this fourth clock is fault free, the time-out mechanism will ensure
convergence. Two questions remain: can a faulty clock prevent the time-out from expir-
ing, and can a faulty clock prevent synchronization if a time-out occurs. We address the
former first.

Recall from the description of the design that, in any synchronization interval, each
clock recognizes at most one signal from any other clock in the system. The only means
to prevent a time-out is for each nonfaulty clock to observe three pulses in an interval,
at least once every eight intervals. In figure 6.6, d is faulty in such a manner that it will
be observed by a, b, and ¢ without significantly altering their computed corrections. This
fault is considered benign because d is regularly transmitting a synchronization pulse that
is visible to all the other clocks in the system. Clock d is considered faulty because it is
not correctly responding to the signals that it observes, Clock ¢ is not visible to either a
or b, and neither of these is visible to c. Neither a nor b will reach a time-out, because
they sec three signals in every interval. However, except for very rare circumstances,
¢ will eventually execute a time-out, and the procedure illustrated in figure 6.5 will cause
a, b, and ¢ to synchronize.

There is one unlikely scenario when & = R/2 in which the good clocks fail to converge.
It requires ¢ to observe a at the end of its interval, with neither a nor b observing c¢. Only
one of the symmetric cases is presented here. This is only possible if ¢ and a are separated
by precisely R/2 ticks. Even then, @ will more likely see ¢ than the other way around.
This tendency can be exaggerated by setting Q to be slightly more than R/2, ensuring
that a will see ¢ first. If a observes ¢, the effect will be the same as if it had a time-out.
Since a is synchronized with b, observing ¢ at the beginning of the interval will cause the
proper correction to be 0, and the system will synchronize.

The only remaining question is whether a faulty clock can prevent the others from
converging if a time-out occurs. Unfortunately, a fault can exhibit sufficiently malicious
behavior to prevent initialization. We begin by looking back at figure 6.5. If a is faulty,
and a time-out occurs for b, then b, ¢, and d will synchronize. If, on the other hand, d
is faulty, we do not get a collection of good clocks within Bre,q. A possible scenario is
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Figure 6.6: End of interval initialization: d faulty—benign.
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Figure 6.7: End of interval initialization: d faulty—malicious.

shown in figure 6.7, where d prevents a from synchronizing and also causes the time-out
for a to reset. At some point, d also sends a pulse at the end of an interval to either b
or ¢ to ensure that just one of them has a time-out. The process can then be repeated,
preventing the collection of good clocks from ever becoming synchronized. This fault is
malicious because the behavior of d appears different to each of the other clocks in the
system.
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The attempt for a fully automatic initialization scheme has fallen short. A sound
mechanism exists for initializing the clocks in the absence of any failures. Also, if a clock
fails passive, the remaining clocks will be able to synchronize. Unfortunately, the technique
Is not robust enough to ensure initialization in the presence of malicious failures.

6.1.2 Comparison With Other Approaches

The argument that the clocks converge within log,(3e.q) intervals is adapted from that
given by Welch and Lynch (ref. 2). However, the approach given here for achieving initial
synchronization differs from most methods in that first the interval clocks are synchronized,
and then an index is decided on for the current interval. Techniques in references 2, 4,
and 6 all depend on the good clocks knowing that they wish to initialize. Agreement is
reached among the clocks wishing to join, and then the initialization protocol begins. It
seems that this standard approach is necessary to ensure initialization in the presence of
malicious faults. The approach taken here is similar to that mentioned in reference 20:
however, details of that approach are not given.

6.2 Transient Recovery

The argument for transient recovery capabilities hinges on the following observation:

As long as there is power to the circuit and no faults are present, the circuit
will execute the algorithm.

With the fact that the algorithm executes continually and that pulses can be observed dur-
ing the entire synchronization interval, we can establish that up to F transiently affected
channels will automatically reintegrate themselves into the set of good channels.

6.2.1 Theory Considerations

A number of axioms were added to the EHDM clock synchronization theory to provide
sufficient conditions to establish transient recovery. Current theory provides an uninstan-
tiated predicate rpred that must imply certain properties. To formally establish transient
recovery, it is sufficient to identify an appropriate rpred for the given design and then show
that a clock will eventually satisfy rpred if affected by a transient fault (provided that
enough clocks were unaffected). The task is considerably simplified if the convergence
function satisfies the recovery variants of precision enhancement and accuracy preserva-
tion. In Chapter 4, it was shown that the fault-tolerant midpoint function satisfies those
conditions. The current requirements for rpred are the following:

1. From module delay3 -
recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(i)(p) A correct _during(p, titl ) A wpred(i + 1)(q)
D syt — sitl < @

2. From module new_basics —
delay_recovery: Axiom
rpred(i)(p) A wvr_pred(i)(q) D |ttt — tt <3
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3. From module rmax_rmin— '
ADJ_recovery: Axiom optionl A rpred(i)(p) D |ADJ,| < a(|B +2xA])

4. From module delay—
wpred_preceding: Axiom wpred(i + 1)(p) D wpred(i)(p) V rpred(i)(p)
wpred_rpred_disjoint: Axiom —~(wpred(i)(p) A rpred(i)(p))
wpred _bridge: Axiom A
wvr_pred(3)(p) A correct_during(p,t;“,t;”) > wpred(i + 1)(p)

The conditions from module delay define wpred; they ensure that a clock is considered
working only if it was working or recovered in the previous interval. They were previ-
ously discussed in section 3.3. Arguments for transient recovery hinge on the first three
constraints presented. In Chapter 3, two options were presented for determining when to
apply the adjustment. These options are

LT = (i + 1)R + T°
o 0 ,
2. T =@+ )R+T - ADJ,

Since the design presented in Chapter 5 uses the second option, the arguments for tran-
sient recovery are specific to that case. The argument for this option depends primarily
on satisfying axiom recovery _lemma.

Axiom recovery_lemma is used in the inductive step of the machine-checked proof of
theorem 3.1. To prove recovery_lemma, it is sufficient for rpred(i)(p) to equal the following:

correct_during(p, s;, t;,“ )
wpred(i)(g) D |sb — 54| < Bread and
—wpred(i)(p)

Using arguments similar to the proof of theorem 3.1, we can then establish that
lADJ;)| < a(ﬁread + 2A’)

licit|(T) — ici™ 1 (T)] < 20(IT = S*| + (Breaa + 2A)) + w (20 + 2,8+ 2A")

The second of these is made possible by using the recovery version of precision en-
hancement. Since 3’ > 4pTmaz + (2N + 2, B + 2A"), all that remains is to establish
that 2p(]S*! — S| 4 (Bread + 2A")) < 4pTmaz- Since Bread < R/2 and o is the identity
function, this relation is easily established. Axiom delay _recovery is easily established for
implementations by using the second algorithm schema presented in Chapter 3. Because
T+ ADJ, = (i+1)R+ 70 and 5t = il ((E+ )R+ T0), all that is required is to
substitute (i + 1) R+ T0 for T in item 2. Since the two options are mutually exclusive and
the design employs the second, axiom ADJ _recovery is trivially satisfied.
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6.2.2 Satisfying rpred

The only modification required to the design is that the synchronization signals include
the sender’s value for i (the index for the current synchronization interval). By virtue of
the maintenance algorithm, the N — F good clocks are synchronized within a bounded
skew 6 < R. A simple majority vote restores the index of the recovering clock. If the
recovering clock’s pulse is within B.aq of the collection of good clocks, rpred is satisfied.
If not, we need to ensure that a recovering clock will always shift to a point where it is
within Sieaq of the collection of good clocks.

The argument for satisfying rpred is given for a four-clock system; the argument for
the general case requires an additional time-out mechanism to avoid pathological cases.
Counsider the first full synchronization interval in which the recovering clock is not faulty.
In a window of duration R, it will obtain readings of the good clocks in the system. If
the three readings are within 6 of each other, the recovering clock will use two of the
three readings to compute the convergence function, restore the index via a majority vote,
and will be completely recovered for the next interval. It is possible, however, that the
pulses from the good clocks align closely with the edge of the synchronization interval. The
recovering clock may see one or two clocks in the beginning of the interval and read the rest
at the end. It is important to be using the end of interval method for resolving the absence
of pulses. By using the end of interval method, it is guaranteed that some adjustment
will be computed in every interval. If two pulses are observed near the beginning of the
interval, the current interval will be shortened by no more than R~ Q. If only one clock is
observed in the beginning of the interval, then either two clocks will be observed at the end
of the interval or the circuit will pretend they were observed. In either case, the interval
will be lengthened by (R — Q)/2. It is guaranteed that in the next interval the recovering
clock will be separated from the good clocks by (R—Q)/2. Since (R~Q)/2 < Bread, the
requirements of rpred have been satisfied. It is important to recognize that this argument
does not depend on the particular value chosen for Q). This gives greater flexibility for
manipulating the design to meet other desired properties.

6.2.3 Comparison With Other Approaches

A number of other fault-tolerant clock synchronization protocols allow for restoration
of a lost clock. The approach taken here is very similar to the one proposed by Welch and
Lynch (ref. 2). They propose that when a process awakens, it observes incoming messages
until it can determine which round is underway and then waits sufficiently long to ensure
that it has seen all valid messages in that round. It then computes the necessary correction
to become synchronized. Srikanth and Toueg (ref. 6) use a similar approach modified to
the context of their algorithm. Halpern et al. (ref. 4) suggest a rather complicated protocol
which requires explicit cooperation of other clocks in the system. All these approaches
have the common theme, namely, that the Joining clock knows that it wants to join. This
implies the presence of some diagnostic logic or time-out mechanism that triggers the
recovery process. The approach suggested here happens automatically. By virtue of the
algorithm’s execution in dedicated hardware, there is no need to awaken a process to
participate in the protocol. The main idea is for the recovering process to converge to a
state where it will observe all other clocks in the same interval and then restore the correct
interval counter.
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Chapter 7

Concluding Remarks

Clock synchronization provides the cornerstone of many fault-tolerant computer ar-
chitectures. To avoid a single point failure it is imperative that each processor maintain a
local clock that is periodically resynchronized with other clocks in a fault-tolerant manner.
Reasoning about fault-tolerant clock synchronization is complicated by the potential for
subtle interactions involving failed components. For critical applications, it is necessary to
prove that this function is implemented correctly. Shankar (NASA CR-4386) provides a
mechanical proof (using EHDM) that Schneider’s generalized protocol (Tech. Rep. 87-859,
Cornell Univ.) achieves Byzantine fault-tolerant clock synchronization if 11 constraints
are satisfied. This general proof is quite useful because it simplifies the verification of
fault-tolerant clock synchronization systems. The difficult part of the proof is reusable;
all that is required for a verified system is to show that the implementation satisfies the
underlying assumptions of the general theory. This paper has revised the proof to sim-
plify the verification conditions and illustrated the revised theory with a concrete example.

Both Schneider and Shankar assumed the property of bounded delay. (This termi-
nology is from Shankar’s report; Schneider called this property a reliable time source. )
This property asserts that there is a bound on the elapsed time between synchronization
actions of any two good clocks. For many protocols, it is easy to prove synchronization
once bounded delay has been established. For these protocols, the difficult part of the
proof has been left to the verifier. This paper presents a general proof of bounded delay
from suitably modified versions of the remaining conditions. This revised set of conditions
greatly simplifies the use of Schneider’s theory in the verification of clock synchronization
systems. In addition, a set of conditions sufficient for proving recovery from transient
faults has been added to the theory. A design of a synchronization system, based on the
fault-tolerant midpoint convergence function, was shown to satisfy the constraints of the
revised theory.

One of the goals of the design was to develop a synchronization system that could au-
tomatically initialize itself, even in the presence of faults. Two approaches for a four-clock
system were explored and shown to possess pathological scenarios that prevent reliable
initialization. An informal sketch of a third approach was given that combines techniques
from the two failed attempts. This technique ensures automatic initialization in the ab-
sence of failures or when the failures are benign. However, malicious behavior from a
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failed clock can prevent good clocks from synchronizing. The standard approach of first
reaching agreement and then synchronizing seems necessary for guaranteed initialization
in the presence of arbitrary failures.

In keeping with the design philosophy of the Reliable Computing Platform (RCP),
the clock synchronization system was designed to recover from transient faults. Sufficient
conditions for transient recovery were embedded in the EHDM proofs. These conditions
were based on the approach used by DiVito, Butler, and Caldwell for the RCP (NASA
TM-102716). It was shown that a four-clock instance of the given design will satisfy the
transient recovery assumptions. Furthermore, the recovery happens automatically; there
is no need to diagnose occurrence of a transient fault.

In summary, a mechanically checked version of Schneider’s paradigm for fault-tolerant
clock synchronization was extended both to simplify verification conditions and to al-
low for proven recovery from transient faults. Use of the extended theory was illustrated
with the verification of an abstract design of a fault-tolerant clock synchronization syster.
Some of the requirements of the theory were established via a mechanically checked formal
proof using EHDM, whereas other constraints were demonstrated informally. Ultimately, a
mechanically checked argument should be developed for all the constraints to help clarify
the underlying assumptions and, in many cases, to correct errors in the informal proofs.
Mechanical proof is still a difficult task because it is not always clear how to best present
arguments to the mechanical proof system. For example, the arguments given for initial
synchronization need to be revised considerably before a mechanically checked proof is
possible. Nevertheless, even though some conditions were not proven mechanically, de-
velopment of the design from the mechanically checked specification has yielded better
understanding of the system than has been possible otherwise.

NASA Langley Rescarch Center
Hampton, VA 23681-0001
July 19, 1993
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Appendix A

Proof of Agreement

This appendix consists of two parts: The first part consists of an informal proof sketch
that agreement can be established by using the revised constraints on 6 and some of the
intermediate results of Chapter 3 are presented. The second part consists of information
extracted from EHDM that confirms that the mechanical proofs of agreement have been
performed for the minor revisions to Shankar’s theory. There are also revised versions of
modules clockassumptions and lemma final; lemma._final contains the EHDM statement of
theorem 2.1, lemma agreement.

A.1 Proof Sketch of Agreement

This section sketches the highlights of an informal proof that the following constraints
are sufficient to establish theorem 2.1; these arguments have not yet been submitted to
EHDM:

1. dprmas + w([2N +2] |8 +20]) <5
2. [(1 + p)ﬂ’ + 2p7'7n(1$-| < 6
3. a(|f +20]) + A+ (28] +1 <9

The first of these constraints is established in Chapter 3 and is used to ensure that
|st, — st| < #. We can use an intermediate result of that proof (lemma 3.1.2) to es-
tablish the second of these constraints. The third constraint is obtained by substituting
the revised bounds on the array of clock readings (established in the proof of part (a) of
theorem 3.1) into Shankar’s proof. This has not been done in the mechanical proof be-
cause Shankar’s proof has not yet been revised to accommodate transient recovery.

We now prove the following theorem (from Chapter 2):
Theorem 2.1 (bounded skew) For any two clocks p and q that are nonfaulty at
ttme t,

[VCyu(t) — VCy(t)] < 6

To do this, we first need the following two lemmas:
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Lemma 2.1.1 For nonfaulty clocks p and q, and max(t;, tfl) <t< min(t;,“,t;“),

[TCH(t) = ICH ] < [(1+ p)B + 20T may]

Proof: We begin by noticing that [C;;(t) = IC;(ici,(IC;(‘t))) (and similarly for IC,).
Assume without loss of generality that iy (ICH(1)) < icg(IC,(t)) < t, and let T = I1C(1).
Clearly, T < max(TIf“,T;“). We now have
[ICL(8) = ICL(H)] = |IC(ick(T)) - IC(ic (T)))
= HC(icy(T)) - IC(ici(T)))|
< [+ p)(icy(T) - ich(T)))]

The final step in the above derivation is established by corollary 5.1.

All that remains is to establish that |icf](T) — i, (T)] < B + 207 mar/ (1 + p). Ear-
lier, we defined r,,,, to be (1 + PR+ a8+ 2A")). The proof is by induction on i. For
1 =0,

licy(T) —icy (D) <[ty — 1] + 2p(max(T;+, ) — T9)

<

< B+ 2p(R+ a8 +24))

For the inductive step, we use lemma 3.1.2 to establish that

lici T (T) — icH(T)| < 2p(|T — S| + a(B +20')) + m(2A + 2,8 + 2A)

There are two cases to consider: if T < S this is clearly less than &'; if T >

S+, this is bounded by & + 2p(max (T, Tit1) — S™1). Tt is simple to establish that

(max (T, T - S < (R+ a(f + 27%)). ]
41 i+1

Lemma 2.1.2 For nonfaulty clocks p and ¢ and t}l+ <t< tp+ ,

[HCLt) = ICT (1) < (|8 + 20")) + A + [208] + 1

Proof Sketch: The proof follows closely the argument given in the proof of case 2 of
theorem 2.3.2 in reference 10. The proof is in two parts. First, the difference at t;“ is
bounded with accuracy preservation, and then the remainder of the interval is bounded.
The difference in this presentation is that here the argument to « is smaller. ]

We can now prove theorem 2.1.

Proof Sketch: The proof consists of recognizing that VCy(t) = IC;(t) for t;, <t< t;“.
This, coupled with nonoverlap and the above two lemmas, assures the result. =
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A.2 E#npMm Extracts

A.2.1 Proof Chain Analysis

The following is an extract of the EHDM proof chain analysis for lemma agreemen
module lemma_final.

—============ ===== SUMMARY e L =
The proof chain is complete

The axioms and assumptions at the base are:

clockassumptions.

clockassumptions
clockassumptions

clockassumptions

clockassumptions.
clockassumptions.
clockassumptions.
.mu_0

.precision_enhancement_recovery_ax
clockassumptions.
clockassumptions.
clockassumptions.
clockassumptions.
.rmax_0

clockassumptions
clockassumptions

clockassumptions

clockassumptions.
clockassumptions.
clockassumptions.
clockassumptions.
.rts_2
clockassumptions.

clockassumptions

clockassumptions

IClock_defn

.Readerror

.VClock_defn
clockassumptions.
.beta_0

accuracy_preservation_recovery_ax

correct_closed
correct_count
init

rate_1
rate_2
rho_0
rho_1

rmin_O
rts0
rtsi
rts2

synctime_0

.translation_invariance

division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn

floor_ceil.floor_

defn

multiplication.mult_10
multiplication.mult_non_neg

noetherian[EXPR,

Total: 30

EXPR] .general _induction
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The definitions and type-constraints are:
absmod. abs
basics.maxsync
basics.maxsynctime
basics.minsync
clockassumptions.Adj
clockassumptions.okay_Reading
clockassumptions.okay_Readpred
clockassumptions.okay_Readvars
clockassumptions.okay_pairs
lemma3. okayClocks
multiplication.mult
readbounds . okaymaxsync

Total: 12
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A.2.2 Module lemma final

lemma_final: Module
Using clockassumptions, lemma3, arith, basics
Exporting all with clockassumptions, lemma3

Theory

P, ¢, P, P2, 1 2, P3, G3, 5, J, k: Var nat

l,m,n: Var int

z,y, z: Var number

posnumber: Type from number with (Az : 2 > 0)
r,s,t: Var posnumber

correct_synctime: Lemma correct(p,t) At < t;, + Toin 2t < t;)”
synctime_multiples: Lemma correct(p,t) At > OAE < i xTmin D t;, >t

synctime_multiples_bnd: Lemma correct(p,t) At > 0Dt < tLt/T"”"HI
agreement: Lemma 8 < T'min
/\ugésl\ﬂ'(D*A-i-Z*ﬁ*p]le,
bs + [2* ((Tmam +B)*p+ A)—‘ +1)
< és
Nbg + [Q*Tmaz*p] +1<6
Aa(bs + (2*(rmw+ﬁ)*p+2*A]+1)+A+ [2xB8xpl+1
<é
At > 0 A correct(p, t) A correct(q, t)
S|VC,(t) —VC@#)| <0

Proof

agreement_proof: Prove agreement from
lemma3.3 {i « [t/Tmin] + 1}
okayClocks_defnIr {i « [t/Tmin] + 1, t < tQCS},
maxsync_correct {s « t, © — [t/Tmin] + 1},
synctime_multiples_bnd {p — (p ft @)[t/Tmin] + 1},
rmin_Q,
div_nonnegative {x «— t, y <« Trin }»
ceil defn {x — (t/Tmin)}

synctime_multiples-bnd_proof: Prove synctime _multiples_bnd from
ceil_plus_mult_div {z < t, y — Trmin b
synctime_multiples {i — [t/Tmin| + 1},
rmin_0,
div_nonnegative {z « t, ¥ < Tmin}

ceil defn {z « (t/Tmin)}
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correct_synctime_proof: Prove correct_synctime from rtsl {¢ — taCs}

synctime_multiples_pred: function|nat, nat, posnumber — bool] ==
(Mi,p.t: correct(p,t) At > 0At < ¥ Typin O tﬁ, > t)

synctime_multiples_step: Lemma
correct(p,t) At > t,At>0D by 2 Tk Tin

synctime_multiples_proof: Prove synctime_multiples from
synctime_multiples_step

synctime_multiples_step_pred: function|nat, nat, posnumber — bool] ==
(M, p,t: correct(p, t) A t, <tAt>0D ty 2 0% Tyyin)

synctime_multiples_step_proof: Prove synctime_multiples_step from
induction {prop « (A7 : synctime_multiples_step_pred(z, p, )},
mult 10 {z — 7,5},
synctime_0,
rts.1 {i — j@P1},
rmin_0,
correct closed {s « t, t — tJ4P1+1}
distrib {z — jAQP1, y — 1, 2 — r ..},
mult_ lident {z — 7,,,;,}

End lemma_final
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A.2.3 Module clockassumptions

clockassumptions: Module
Using arith, countmod
Exporting all with countmod, arith
Theory
N: nat
N.0: Axiom N >0

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is integer

[,m.n,p,q.p1,P2, 41,92, P3, 43 Var process

i,7,k: Var event

I, Y, 2,7, S, b var time

X,Y.Z,R,S,T: Var Clocktime

~,8: Var function|process — Clocktime]

8. P, Pmin: Tinaz 3: number

A, p: Clocktime

PC(%2), VC.a(¥2): function|process, time — Clocktime]
¢*2: function|process, event — time]

©*?: function|process, event — function|process — Clocktimel]
IC*3(%3): function[process, event, time — Clocktime]

correct: function[process, time — bool]

cfn function[process, function[process — Clocktime] — Clocktime]
7. function[Clocktime, Clocktime — Clocktime]

a: function[Clocktime — Clocktime]

delta 0: Axiom é >0
mu_0: Axiom p >0
rho 0: Axiom p >0
rho_1: Axiom p <1
rmin.0: Axiom 7pin >0
rmax_0: Axiom Tpex > 0
beta 0: Axiom 3 >0

lamb_0: Axiom A >0
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init: Axiom correct(p, 0) D PCL(0) > 0A PCL0) < u

correct_closed: Axiom s > ¢ A correct(p, s) D correct(p, t)

rate_.1: Axiom correct(p,s)As >t D PCp(s) = PCL(t) < [(s — t)x (1 + p)]
rate.2: Axiom correct(p,s) As >t > PCy(s) = PCp(t) > (s —t) » (1 — Pl
rts0: Axiom correct(p,t) At < t;“ ot— t; < Tmaz

rtsl: Axiom correct(p,t) At > tf,“ Ot — t;, > Tonin

rts 0: Lemma correct(p, t}fl) ») t;,“ - t;) < Tmaz

rts_.1: Lemma correct(p, t;,“) ) t;,“ - t';, > Tonin

rts2: Axiom correct(p,t) At > tfl + 3 A correct(g,t) Dt > t;)

rts_2: Axiom correct(p, tfp) A correct(q, tfl) ») 1‘;‘) - tf] <43

synctime_0: Axiom tg =0

VClock_defn: Axiom
correct(p, t) At > th At < D VC,(t) = IC(t)

adj;%: function[process, event — Clocktime] =
(Ap,i:(if i >0 then cfn(p, 9;,) — PCp(t;) else 0 end if))

IClock defn: Axiom correct(p,t) IC;)(t) = PC,(t) + adj;

Readerror: Axiom correct(p, tor1) A correct(q, tt)
i +1 _ (i1
216, (g) = IC3 (1) < A

translation_invariance: Axiom
Cfn(ps ( /\pl — Clocktime : ’)’(pl) + ‘X)) = CfTL(]),’)’) + X

ppred: Var function[process — bool]
F. process
okay_Readpred: function|function[process — Clocktime], number,
function[process — bool] — bool] =
(Av,y.ppred : (VI,m : ppred(l) A ppred(m) D |y(1) — ~(m)| < y))
okay_pairs: function[function[process — Clocktime],
function[process — Clocktime], number,
function[process — bool] — bool] =

(A7, 0,2, ppred : (V py : ppred(ps) > |v(ps) — O(py)| < )

okay_Readpred_floor: Lemma
okay_Readpred(~y, y, ppred) D okay Readpred(, |y, ppred)

okay_pairs_floor: Lemma
okay _pairs(v, 8, x, ppred) > okay _pairs(~y. 8, |z |, ppred)
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N_maxfaults: Axiom F < N

precision_enhancement_ax: Axiom
count(ppred, N) > N — F
A okay_Readpred (v, Y, ppred)
A okay_Readpred(8, Y, ppred)
A okay_pairs(y, 8, X, ppred) A ppred(p) A ppred(q)
> |efn(p,y) — ¢fn(q,0)] < w(X,Y)

precision_enhancement_recovery_ax: Axiom
count(ppred, N) > N — F
A okay_Readpred(~y, Y, ppred)
A okay_Readpred(8, Y, ppred) A okay__pairs(y, 8, X, ppred)
> |efnlp, ¥) — efnlg, )] < (X, Y)

correct_count: Axiom count(( A p : correct(p,t)), N) =2 N — F

okay_Reading: function[function(process — Clocktime], number, time
— bool] =
(Av, gt (VoL e
correct(pi, t) A correct(g1, t) D |7(p1) — (@)l <¥)
okay_Readvars: function[function[process — Clocktime],
function|process — Clocktime], number, time
— bool] =
(Av,8,x,t: (Vps:correct(ps, t) D lv(ps) — B(p3)| < x))

okay_Readpred_Reading: Lemma
okay_Reading(v,y,t) D okay_Readpred(v,y, (Ap: correct(p, t)))

okay_pairs_Readvars: Lemma
okay_Readvars(,6,z,t) D okay_pairs(v,8,z, (A p : correct(p, t)))

precision_enhancement: Lemma
okay_Reading(7,Y, t;,“ )
A okay_Reading(0,Y, t;,“)
A okay_Readvars(7, 8, X, t5H!
A correct(p, tht!) A correct(q, tith)

2 |cfn(p, 7) - Cfn(QVH)l < W(X~Y)

okay_Reading_defn_Ir: Lemma
okay_Reading(v, y,t)
> (Vp1,qi : correct(py,t) A correct(qi, t) D lv(p1) — (@)l < )

okay_Reading_defn_rl: Lemma

(V¥ p1, 1 : correct(py, t) A correct(g1, ) 2 [v(p1) — (g) < y)
O okay_Reading(7y,y,t)

okay_Readvars_defn_Ir: Lemma
okay_Readvars(y, 8, z,t) D (V ps : correct(ps, t) D |7(ps) — 8(p3)| < x)

58



okay_Readvars_defn_rl: Lemma
(V' ps : correct(ps, t) D [y(ps) — O(ps)| < ) > okay -Readvars(v,6, z, t)

accuracy_preservation_ax: Axiom
okay_Readpred(v, X, ppred) A count(ppred, N)>N-Fna ppred(p) A ppred(q)
2 Jefalp, ) ~ ()] < a(X)

accuracy preservation _recovery_ax: Axiom
okay_Readpred(~, X, ppred) A count(ppred, NY>N-FA ppred(q)
2 lefnlp,7) ~ v(9)] < a(X)

Proof

okay_Readpred floor_pr: Prove okay_Readpred_floor from
okay_Readpred {I «— [@p2, m — map2},
okay Readpred {y « |y]},
labs_is_abs {X «— y(l@p2) — Y(m@p2), x — y(lap2) — v(m@Qp2)},
floor_mon {r 1abs(X@p3)},
floor_int {7 — iabs(X@p3)}

okay_pairs_floor_pr: Prove okay_pairs_floor from
okay_pairs {p3 — p;@p2},
okay_pairs {z — |z]},
iabs_is_abs {z — v(p3@p2) — O(p3@p2), X 7(p3@p2) — O(p3@p2)},
floor.mon {z «— iabs(X@p3), y x},
floor_int {i — iabs(X@p3)}

precision_enhancement_ax_pr: Prove precision_enhancement_ax from
precision_enhancement_recovery_ax

accuracy_preservation_ax_pr: Prove accuracy_preservation_ax from
accuracy preservation_recovery_ax

okay_Reading_defn _rl_pr: Prove
okay_Reading_defn_rl {p, < p1OP1S, ¢; — ¢;0P1S} from okay_Reading

okay Reading_defn_Ir_pr: Prove okay_Reading_defn_Ir from
okay_Reading {p, — p,@CS, q1 < q1OCS}

okay Readvars_defn_rl_pr: Prove okay_Readvars_defn_rl {p; — p3@P1S} from
okay_Readvars

okay_Readvars_defn_Ir_pr: Prove okay_Readvars_defn Ir from
okay_Readvars {p3 — p3@CS}
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precision_enhancement._pr: Prove precision_enhancement from
precision_enhancement_ax {ppred — (A q: correct(q, t;,“))},
okay_Readpred_Reading {t — t;,“, y— Y},
okay_Readpred_Reading {t — t;,“, y—Y, v 0}
okay_pairs_Readvars {t « t;,“, z— X},
correct_count {t < t;,“}

okay_Readpred_Reading_pr: Prove okay_Readpred_Reading from
okay_Readpred {ppred — (Ap: correct(p, 1))},
okay_Reading {p1 — {QP15, q1 < m@P1S}

okay_pairs_Readvars_pr: Prove okay_pairs_Readvars from
okay_pairs {ppred « (Ap: correct(p, 1))}, okay_Readvars {p3 « p3@P1S}

rts.0_proof: Prove rts 0 from rts0 {t — i1}
rts_1_proof: Prove rts.1 from rtsl {t « t;,“}

End clockassumptions
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Appendix B
Bounded Delay Modules

This appendix contains the EHDM proof modules for the extended clock synchro-
nization theory. The;nnofchahlanaWsmistakmlﬁUnlnuxhﬂesdeby4,rmaXJnﬂn,and
new_basics. Module delay4 contains the proofs of bounded delay, whereas rmax _rmin and
new_basics show that the new conditions are suflicient for establishing some of the old
constraints from Shankar’s theory. Several lines of the proof analysis have been deleted.
The pertinent information concerning the axioms at the base of the proof chain remains.

B.1 Proof Analysis

B.1.1 Proof Chain for delay4

Terse proof chains for module delay4

SUMMARY
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.N_maxfaults
clockassumptions.accuracy_preservation_recovery_ax
clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rho_0
clockassumptions.translation_invariance
delay.FIX_SYNC
delay.RATE_1
delay.RATE_2
delay.R_FIX_SYNC_0O
delay.betaread_ax
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delay.bnd_delay_init
delay.fix_between_sync
delay.good_read_pred_axl
delay.read_self
delay.reading_errorB
delay.rts_new_l
delay.rts_new_2
delay.synctimeO_defn
delay.synctime_defn
delay.wpred._ax
delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optionl_defn
delay4.option2_defn
delay4.options_exhausted
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction
Total: 36

B.1.2 Proof Chain for rmax_rmin

Terse proof chains for module rmax_rmin

SUMMARY
The proof chain is complete
The axioms and assumptions at the base are:

clockassumptions.IClock_defn
clockassumptions.accuracy_preservation_recovery_ax
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clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rho_0
clockassumptions.translation_invariance
delay.FIX_SYNC
delay.RATE_1
delay.RATE_2
delay.R_FIX_SYNC_0O
delay.betaread_ax
delay.bnd_delay_init
delay.fix_between_sync
delay.good_read_pred_ax1
delay.read_self
delay.reading_error3
delay.rts_new_1
delay.rts_new_2
delay.synctimeO_defn
delay.synctime_defn
delay.wpred_ax
delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optioni_defn
delay4.option2_defn
delay4.options_exhausted
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction
rmax_rmin.ADJ_recovery
Total: 36

B.1.3 Proof Chain for new basics

Terse proof chains for module new_basics
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SUMMARY
The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.N_maxfaults
clockassumptions.accuracy_preservation_recovery“ax
clockassumptions.precision_enhancement_recovery_ax
clockassumptions.rho_O
clockassumptions.translation_invariance
delay .FIX_SYNC
delay.RATE_1
delay .RATE_2
delay.R_FIX_SYNC_O
delay.betaread_ax
delay.bnd_delay_init
delay.fix_between_sync
delay.good_read_pred_axl
delay.read_self
delay.reading_error3
delay.rts_new_1
delay.rts_new_2
delay.synctimeO_defn
delay.synctime_defn
delay.wpred_ax
delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optionl_defn
delay4.option2_defn
delay4.options_exhausted
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_non_neg
multiplication.mult_pos
new_basics.delay_recovery
new_basics.nonoverlap
noetherian [EXPR, EXPR].general_induction
rmax_rmin.ADJ_recovery

Total: 39
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B.2 delay

delay: Module

Using arith, clockassumptions
Exporting all with clockassumptions
Theory

D.4:p1,q91: Var process

1,7,k Var event

X, S, T: Var Clocktime

s, tt1,t2: Var time

v: Var function|process — Clocktime]
3, Bread, A number

R: Clocktime

betaread_ax: Axiom 7 < Bread A Bread < R/2

ppred, ppredl: Var function|process — bool]

SY: Clocktime

S*!: function[event — Clocktime] = (X7 :4% R+ S")

pe,y(%2): function|process, Clocktime — time]

ie}7(x3): function[process, event, Clocktime —» time] =
(z\p.i,T:p(:p(T— adjy,)) o

s3%: function|process, event — time] = (Ap,i:ich(SY))

TY: Clocktime

T}2: function|process, event —s Clocktime]

synctime_defn: Axiom t;*! = ich (T3
synctime0_defn: Axiom tg = icg(TU)
FIX.SYNC: Axiom S > 7V
R_FIX.SYNC.0: Axiom R > (S" — T
R.0: Lemma R > 0

good_read pred: function[event — function|process, process — bool]]

correct_during: function[process, time, time —s bool] =
(Ap,t,sit<sA(Vi :t< ti At < s D correct(p, t;)))

wpred: function[event — function[process — bool|]

rpred: function[event — function[process — bool]]

wvr_pred: functionfevent — function[process — bool]] =
(Ai:(Ap: wpred(i)(p) V rpred(i)(p)))

working: function[process, time — bool] =
(Ap,t:(3i: wpred(i)(p) At <tAt < tiry)

65



wvr_defn: Lemma wvr_pred(i) = (Ap: wpred(#)(p) V rpred(:)(p))
wpred wvr: Lemma wpred(i)(p) O wvr_pred(i)(p)

rpred_wvr: Lemma rpred(i)(p) D wvr_pred(i)(p)

wpred_ax: Axiom count(wpred(i), N) > N — F

wvr_count: Lemma count(wvr_pred(i), N) > N — F

wpred_correct: Axiom wpred(i)(p) D correct_during(p, t;,t;“)
wpred_preceding: Axiom wpred (i + 1)(p) D wpred(i)(p) V rpred (i) (p)
wpred_rpred_disjoint: Axiom —(wpred(i)(p) A rpred(i)(p))

wprea_bridge: Axiom
wvr_pred()(p) A correct_during(p, t;,“ , t;”) > wpred(i + 1)(p)

wpred_fixtime: Lemma wpred(i)(p) 2 correct_during(p, 85, t5"")
wpred fixtime_low: Lemma wpred()(p) D correct _during(p, ti,, s;)

correct_during_trans: Lemma
correct_during(p, t, t2) A correct _during(p, t2, s)
> correct_during(p, t, $)

correct_during_sub_left: Lemma
correct_during(p,t,s) At <taAtg £ 8D correct _during(p, t, t2)

correct_during_sub_right: Lemma
correct_during(p,t,s) At <taAta < 8D correct _during(p, t2, s)

wpred_lo_lem: Lemma wpred(i)(p) D correct(p, t4)
wpred_hi_lem: Lemma wpred(i)(p) D correct(p, t;,“
correct_during_hi: Lemma correct_during(p, t,s) D correct(p, s)
correct_during_lo: Lemma correct_during(p, t, 8) D correct(p, t)
clock_axl: Axiom PCy(pc,(T)) =T

clock_ax2: Axiom pc,(PCp(t)) StAL< pe,(PCp(t) + 1)
iclock_defn: Lemma ic,(T) = pep(T — adjp,)

iclock0_defn: Lemma icy(T) = pe,(T)

iclock_lem: Lemma correct(p, icL(T)) D IC;,(ic;(T)) =T

ADJ2: function[process, event — Clocktime] = (Ap,i: adjziﬂ - adj;;)
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IClock_ADJ_lem: Lemma correct(p, t) > IC(t) = ICL(t) + ADJ}
iclock ADJ_lem: Lemma ici*!(T) = ic,(T —~ ADJ})

rts_new.1: Axiom correct(p, #1*') > S* + (|8 + 2 + AN]) < Tt
rts_new._2: Axiom correct(p,t}) O T < S~ a(|f + 2+ A

FIXTIME bound: Lemma
correct(p, tit!1) 5 1 > g1 1 94 a(lf' +2xA))

R_bound: Lemma correct(p, t ) O R > 2« a(|f +2xA))

RATE_1: Axiom correct -during(p, pc, (T), pe,(S)) AS > T
D pey(S) = pey(T) < (S —T) » ( +p)

RATE_2: Axiom correct_ during(p, pc,(T), pe(S))AS>T
2 pep(S) — pe,(T) > (S - T)/(1 +p)

RATE 1 iclock: Lemma
correct during(p, icy,(T),ic,(S)) A S > T
D ich(S) — ict (T) <(S-T)*(1+p)

RATE 2.iclock: Lemma
correct during(p, ch(T) i (S)AS>T
D iy (S) —ich(T) > (S T)/(1+ p)

rate simplify: Lemma S > T > (S - T)/(1 + p) 2 (S—=T)*(1~-p)

rate_simplify_step: Lemma S > T > (1 + p) % (S—T)x(1-p)<S-T

RATE_2 simplify: Lemma
correct_during(p, pc,,(T), pep(S))ANS>T
D pep(S) = pey(T) > (S - T)»(1-p)

RATE_2 simplify_ iclock Lemma
correct_during(p, ic},(T), ch(S)) AS>T

. 1cp(S) —1c (T) >(S5=T)*(1-p)

RATE_lemmal: Lemma
correct during(p, pc,,(T), pc,(S))
A correct durmg(q pe, ( )P, (SHANS>T
D lpey(S) = peg(S)] < Ipc (T) =peg(T)| + 2% p» (S - T)

RATE_lemmal_iclock: Lemma
correct_during(p, ict »(T), z'(‘,'J(S))
A correct _ durlng(q, icg(T),icy(SHYAS>T
D ek, (S) — ict (S| < lch(T) g (T)| +2xp* (S ~T)
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RATE_lemma2: Lemma
correct_during(p,pcp(T),pcp(S)) ANS>T
S [(pe,(S) — 8) — (pep(T) =T < px (15 =T

RATE _lemma2._iclock: Lemma
correct_during(p, ick,(T), ic;(S)) ANS>T
S |(ich(S) — 8) — (ich(T) =T < px (1S = T1)

bnd_delay_init: Axiom

wpred (0)(p) A wpred(0)(q)
D |t) — tql < —2xpx (SO —TOAB —2x(px(S*-T%)) <5

bnd_delay_off_init: Lemma wpred(0)(p) A wpred(0)(g) D s — sl < B
good_read _pred_ax1: Axiom
correct_during(p, s&, tith)

A correct_during(q, sfl, tfz“) A lsi, - sf}| < Bread
> good_read_pred(i)(p, 9)

reading_error3: Axiom
good_read _pred(i)(p, q)
> (©5 (q) — ICH(t5) — (s — syl < A
ADJ_lem1: Lemma correct_during(p, sh, t;,“)
> (ADJE = cfnlp, (Ap1: O (p1) = IC,(t5t)))
ADJ_lem2: Lemma correct_during(p, s;, t;')“ )
D (ADJI’; = cfn(p, @;,“) - IC;,(t;,“))
read_self: Axiom wpred(#)(p) D @;,“(p) = IC;,(t;,“)
fix_between_sync: Axiom
correct_during(p, t’;,,t;',“) ot < st A 8%, < tett

rts 2 lo: Lemma wpred(i)(p) A wpred(i)(q) D |t — | < B

rts.2_hi: Axiom wpred(i)(p) A wpred(i)(g) D |t;;+1 - tf]“| <pg

Proof

R.0_pr: Prove RO from R_FIX_SYNC_0, FIX.SYNC
FIXTIME_bound_pr: Prove FIXTIME_bound from rts_new_1, rts_new 2 {i — i + 1}
R_bound_pr: Prove R_bound from FIXTIME bound, S*l S* i — i+ 1}

iclock_defn_pr: Prove iclock defn from ict3(x3)
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wpred_fixtime_pr: Prove wpred _fixtime from
fix_between_sync,
wpred _correct,
correct_during_sub_right {s «— t*1, { — th, ty — s}

wpred fixtime_low_pr: Prove wpred _fixtime_low from
fix_between _sync,
wpred _correct,
correct during_sub_left {s — t;,“, ety to— s}

correct_during_sub _left_pr: Prove correct_during_sub_left from
correct during {s < ¢}, correct_during {t; — t;@pl}

correct_during_sub_right_pr: Prove correct_during_sub_right from
correct during {t « ¢y}, correct_during {¢; — t;Qp1}

correct_during_trans_pr: Prove correct_during_trans from
correct_during,
correct during {s « to, t; « t,@pl},
correct_during {t «— ty, t; « t,@Qpl}

wpred wvr_pr: Prove wpred_wvr from wvr_defn
rpred_wvr_pr: Prove rpred_wvr from wvr_defn

wvr_defn_hack: Lemma
(Vp: wyr_pred(i)(p) = ((Ap : wpred(i)(p) V rpred(i)(p))p))

wvr_defn_hack_pr: Prove wvr_defn_hack from wvr_pred {p — pQc}

wvr_defn_pr: Prove wvr_defn from
pred_extensionality
{predl «— wvr_pred(i),
pred2 — (A p : wpred(i)(p) V rpred(i)(p))},
wvr_defn_hack {p — pQpl}

wvr_count_pr: Prove wvr_count from
wpred_ax,
count_imp
{ppredl — wpred(i),
ppred2 — (A p : wpred(i)(p) V rpred(i)(p)).
n— N},
wvr_defn,
imp_pred_or {ppredl «— wpred(i), ppred2 «— rpred(7)}

w,x,y, z: Var number

bd_hack: Lemma |w| <z —yAlz| < |w|+yDlz| <=z
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bd_hack_pr: Prove bd_hack

bnd_delay_off_init_pr: Prove bnd_delay_off_init from
bnd_delay_init,
RATE_lemmal_iclock {S «— 8% T « T° i~ 0},
FIX_SYNC,
synctimeO_defn,
synctime0_defn {p — q},
sii {i— 0},
sii{i =0 p—g}
wpred_fixtime_low {i — 0},
wpred_fixtime_low {p < ¢, i « 0},
S*1 {i — 0}

mult.abs_hack: Lemma zx (1 —p) <yAy<zx(1+p)Dly—z|<pxz

mult_abs_hack_pr: Prove mult_abs_hack from
mult_ldistrib {y — 1, z — p},
mult_ldistrib_minus {y «— 1, z < p},
mult_rident,
abs3.bnd {z — vy, y— T, 2+ pxT},
mult_com {y « p}

RATE_1_iclock_pr: Prove RATE_ l.iclock from
RATE.1 {S — S — adji, T « T — adjp},
iclock_defn,
iclock_defn {T « S}

RATE_2_iclock_pr: Prove RATE_2_iclock from
RATE2 {S — S — adji, T — T — adjp},
iclock_defn,
iclock_defn {T — S}

RATE_2_simplify_iclock_pr: Prove RATE _2_simplify_iclock from
RATE 2 simplify {S — S —adji, T — T — adjp},
iclock_defn,
iclock_defn {T" — S}

RATE_lemmal_sym: Lemma
correct_during(p, pc,(T), pep(S))
A correct_during(q, pe,(T),pcg(S)) AS 2T A pey(S) 2 peg(S)
> [pe,y(8) = peg(S)] < lpep(T) = peg(T)| + 2+ p* (S = T)

Rilhack: Lemma w < 2 Ay < zAy >z Dy — x| < |2 — w|

Rilhack_pr: Prove Rilhack from |x 1| {z <y — z}, |* 1| {z — z —w}
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RATE_lemmal_sym_pr: Prove RATE_lemmal_sym from
RATE_1,
RATE_ 2_simplify {p «— q},
Rilhack
{z — pc, ().
y — pc,(S),
W= pey(T) + (S~ T) % (1 - p),
z2 = pcy(T) + (S ~T) % (1+p)},
mult_Idistrib {x — S - T, y — 1, 2z — P},
mult_Idistrib-minus {z <~ S —T, y 1, z — o},
abs_plus {z « pc,(T) - pe(T), y—2xpx (S —T)},
mult_.com {z — p, y — § -~ T},
abs_ge0 {z — 2xpx (S —T)},
mult_non_neg {z «— p, y — S — T},
rho 0

RATE lemmal_pr: Prove RATE_lemmal from
RATE_lemmal _sym,
RATE lemmal_sym {p — ¢, q < p},
abs.com {z — pc,(S), y — pc,(S)},
abs_com {z — pc,(T), y « pc,(T)}

RATE lemmal_iclock_sym: Lemma
correct_during(p, ick,(T), ic;,(S))
A correct_during(q, ic (T), g (SHAS>TA icy(S) > icy(S)
D [icy(8) — ik (S)] < licy(T) — ich(T)| + 2% px (S = T)

RATE lemmal_iclock_sym_pr: Prove RATE _lemmal_.iclock_sym from
RATE 1_iclock,
RATE_2_simplify_iclock {p «— q},
Rilhack
{r « icfl(S'),

y —icy(S),

w e icy(T) + (S — T) % (1 — 0),

2 ich(T) + (S - T) (1 +p)}
mult_Idistrib {z — S —T, y — 1, 2z 33
mult_ldistrib_minus {z — S — T, y 1, 2 — o},
abs_plus {z « ici(T) - icz(T), Yy—2xpx(S-T)},
mult_.com {z — p, y — S~ T},
abs gel {z — 2xp« (S —T)},
mult_non_neg {z — p, y — S - T},
rho_0
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RATE_lemmal_iclock_pr: Prove RATE _lemmal_iclock from
RATE _lemmal_iclock_sym,
RATE_lemmal_iclock_sym {p—4q. q+<p}
abs_com {x + ic; (S) y « ich(S)},
abs_com {z — icy(T), y — ch(T)}

RATE_lemma2_pr: Prove RATE lemma2 from
RATE.1,
RATE_2 simplify,
mult_abs_hack {zx — S —T. y — pcy(S) — pe,(T)}
abs_ge0 {z — S - T}

RATE _lemma2_iclock_pr: Prove RATE_ lemma2_iclock from
RATE_lemma2 {S «— S — ad]p T—T- ad]p}
iclock_defn {T — S},
iclock_defn

wpred_lo_lem_pr: Prove wpred_lo_lem from
wpred _correct,
correct_during {s « t“rl t—th, 1 — th}

wpred_hi_lem_pr: Prove wpred_hi_tem from
wpred _correct,
correct_during {s « t;’;‘l, t — t;,, t — t;)“}

correct_during_hi_pr: Prove correct_during_hi from correct_during {t; — s}
correct_during_lo_pr: Prove correct_during_lo from correct _during {t1 — t}
mult_assoc: Lemma zx (y*z) = (zxy) * 2

mult_assoc_pr: Prove mult_assoc from
x1 %2 {y — y*z},
*1 % %2,
*lxx2 {z—y, Yy z},
slx#2 {x —T*y, Yy 2}

diff_squares: Lemma (1 + p) * (1 - p)=1—pxp

diff_squares_pr: Prove diff_squares from
distrib {z — 1, y — p. z+ 1—p},
mult_lident {z «— 1 — p},
mult_ldistrib_minus {x — p, y — 1, z < ph
mult_rident {z — p}
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rate_simplify_step_pr: Prove rate_simplify_step from
mult com {z — (§ - T), y — (1 - P}
mult_assoc {z —~ 14 p, y 1 —p, 2= 8S~-T},
diff_squares,
distrib_minus {z « 1, y — p*xp, z—8S—-T}
mult_lident {z — § — T},
pos_product {x — pxp, y — § — T},
pos_product {z — p, y « p},
rho_0

rate_simplify_pr: Prove rate_simplify from

div_ineq
{z = (1+p),
y—(5-1),

= (14 p)*(S=T) (1~ p)},
div_cancel {z «— (1 +p), y «— (S=T)*(1-p)},
rho_0,
rate_simplify step

RATE_2_ simplify_pr: Prove RATE_2_simplify from RATE_2, rate_simplify

iclock_lem_pr: Prove iclock_lem from .
iclock_defn, IClock_defn {t — ic;,(T)}, clock.ax1 {T «— T — adj, }

IClock_ADJ_lem pr: Prove IClock_ ADJ lem from
IClock defn, ICiock defn {i — i 4 1}, ADJ*2

iclock_ADJ_lem_pr: Prove iclock_ADJ_lem from
iclock defn {T" — T' — ADJ!}, iclock defn {i — i + 1 } ADJ?

ADJ_lem1 pr: Prove ADJ leml from
ADJ lem?2, ‘
translation_invariance {X — —IC,(t4H), v o;t}

ADJ_lem2_pr: Prove ADJ_lem? from
ADJE
adit? {i — i+ 1},
IClock_defn {t — ¢i*t1, 4 — 4},
correct_during_hi {t — sﬁ,, 5 — t;,“}

End delay
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B.3 delay2

delay2: Module

Using arith, clockassumptions, delay
Exporting all with clockassumptions, delay
Theory

p,q,p1,q1: var process
i Var event
delay_pred: function[event — bool] =
(ni+ (¥ p,q : wpred(d)(p) A wpred(i)(@) > Is, = sl < )
ADJ_pred: functionfevent — bool] =
(Xi:(Vp:i>1Awpred(i— )(p) D |ADJ;;’1| < a(lf +2xA'))))

delay_pred_Ir: Lemma . ‘
delay_pred(i) D (wpred(i)(p) A wpred(i)(q) D |8t — 8¢l < 3)

bnd_delay_offset: Theorem ADJ_pred(i) A delay_pred(i)

bnd_delay_offset_0: Lemma ADJ_pred(0) A delay_pred(0)

bnd_delay_offset_ind: Lemma
ADJ_pred(i) A delay_pred(i) D ADJ _pred(i + 1) A delay_pred(i + 1)

bnd_delay_offset_ind_a: Lemma delay_pred(i) D ADJ_pred(i + 1)

bnd_delay_offset_ind_b: Lemma
delay_pred(i) A ADJ_pred (i + 1) D delay_pred(i + 1)

good_ReadClock: Lemma
delay_pred(i) A wpred(i)(p) D okay_Readpred(©5+!, 8" + 2+ A, wpred(i))

good_ReadClock_recover: Axiom
delay_pred(i) A rpred(i)(p) D okay_Readpred(©51. 8" + 2 x A, wpred(i))

delay_prec_enh: Lemma
delay_pred() A wpred(i)(p) A wpred(i)(q)
O |(sh — sty — (ADJ — ADJY)| < (|2 % AN +2],18 +2xN))

delay_prec_enh_stepl: Lemma
delay_pred(i) A wpred(i)(p) A wpred(i)(q)
S \efa(p, (Ap1 : 57 (p1) = ICH(E) = L5p))
— cfalg, (Apr : O (m) — ICH(t5) — [sg1))]
<w(|2x N +2],18 +2xAN])
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delay prec_enh stepl_sym: Lemma
delay_pred(z) A wpred(i)(p) A wpred(i)(q) A (ADJ; - s;, > ADJ(’I" - st)
D ](ADJ;, —sp) — (ADJ; — Sg)| o -
< lefalp. (A1 : O (pr) - 1C3(3+) — (51 )

—efrla, (Ap1: O (pr) — ICH(EE) — [s1]))]

prec_enh_hypl: Lemma
delay_pred(i) A wpred(i)(p) A wpred(i)(q)
D okay_pairs(( A p; : 01t (py) — IC;(t;,“) ~ [sL)),
(Ap1: 057 (p1) ~ ICL(t1) = Ts ),
2x A+ 2,
wpred (7))

prec_enh_hyp_2: Lemma
delay_pred(i) A wpred(:)(p)
D okay_Readpred(( A p; : Ot (py) — IC;,(t;,“) —[s3]),
B+ 2% A,
wpred (7))
prec_enh_hyp_3: Lemma
delay_pred(i) A wpred(i)(q)
D okay_Readpred(( A p; : 0. (py) ICz(té“) = [s51),
B +2x A,
wpred(7))
Proof

delay_pred_Ir_pr: Prove delay_pred_Ir from delay_pred
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delay_prec_enh_stepl_pr: Prove delay_prec_enh_stepl from
precision_enhancement.ax
{ppred «— wpred(i),
Y « |8 +2xAN],
X — |2x A +2],
e (Ap: O3 () — ICH(E) = Lsp).
6 — (Ap1: O (;m) — ICy () — [sg1)}.
prec_enh_hypl,
prec_enh_hyp_2,
prec_enh_hyp_3,
wpred_ax,
okay_Readpred_floor
{ppred « wpred(i),
y— B +2xN,
v < ~v0@pl},
okay_Readpred _floor
{ppred «— wpred(¢),
ye—3+2x% A,
v — 6@pl},
okay_pairs_floor
{ppred «— wpred(i),
z— 2x AN +2,
v« v@pl,
f — 6@pl}

prec_enh_hyp_2_pr: Prove prec_enh_hyp 2 from
good_ReadClock,
okay_Readpred
(v = (Ap1: O (p1) — ICH(E) = Lsp)),
Yy — ,3/ +2x A,
ppred «— wpred(i)},
okay_Readpred
{,7 — 9;;‘1'
y— B +2xA,
ppred «— wpred(i),
| — 1@p2,
m «— m@p2}
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prec_enh_hyp_3_pr: Prove prec_enh_hyp_3 from
good_ReadClock {p « ¢},
okay_Readpred
=m0 (m) - 1CE 1) - 1517,
Yy — ﬂ/ + 2 % A/,
ppred « wpred(7)},
okay_Readpred
{v = oyt
ye—3 +2xA,
ppred « wpred(i),
[ — lQp2,
m «— m@p2}

bnd_del off_ 0_pr: Prove bnd_delay_offset_0 from
ADJ pred {i — 0},
delay pred {7 — 0},
bnd_delay_off_init {p — pap2, q «— qQp2}

bnd_delay_offset_ind_pr: Prove bnd_delay offset_ind from
bnd_delay offset_ind a, bnd_delay offset_ind_b

bnd_delay_offset_pr: Prove bnd_delay_offset from
induction {prop « (A3 : ADJ_pred(i) A delay_pred(i))},
bnd_delay_offset_0,
bnd_delay offset_ind {; — Jj@pl}

a,b,c, (Z, e, f,g,h: Var number

abs_hack: Lemma |a - b|
Sle—Jl+lla~c)—(d=e)+|(b—e) - (d - f)|

abs_hack_pr: Prove abs_hack from
abs.com {x — f, y — ¢},
abs.com {o — (d— f), y — (b— o)},
abs_plus
{r—(f-e),
ye—(la—c)=(d—e)+((d- f) - (b-e)},
abs.plus {x — ((a ~¢) ~(d—e)), y — ((d— f) - (b )}

abshack2: Lemma |a| < bA || < d A lel <dDlal+ e[+ |e|] <b+2%d

abshack2_pr: Prove abshack?
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good_ReadClock_pr: Prove good_ReadClock from
okay_Readpred
{y =6,

Y — ﬁ' +2x A,

ppred — wpred(%)},
delay_pred {p « 1@pl, g — m@pl},
delay_pred {q — 1@pl},
delay_pred {q — m@pl},
reading_error3 {q « [@pl},
reading_error3 {q — m@pl},
abs_hack

{a — 6;+1(l@p1),

b — 6;,“(m@p1),

e ICHt5™)

d «— 31;,,

€ < Siap1:

f - stm@pl}'
abshack2

{a «— eQp7 — fQp7,

be g,

¢ — ((a@p7 — c@p7) — (dQ@pT7 — e@pT)),

d— N,

e — ((b@pT — c@pT) — (d@p7 — f@pT))},
good_read_pred_ax1 {g « [@pl},
good_read_pred_axl {g — m@pl},
wpred_fixtime,
wpred _fixtime {p « (@pl},
wpred_fixtime {p «— m@pl},
betaread_ax
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bnd_del_off_ind_a_pr: Prove bnd_delay offset_ind_a from
ADJ pred {i — i + 1},
ADJ.lem2 {p — p@pl},
accuracy._preservation _ax

{ppred — wpred(i),
i+l

q — p@pl,

X =18 +2xA},
wpred_ax,
read_self {p — p@pl},
good_ReadClock {p p@pl},
wpred_fixtime {p «— p@p1},
okay_Readpred_floor

{ppred — wpred(s),
v +— y@p3,
y B +24 A

abshack4: Lemma a — b >c—d

2 lla~0) —(c—d)| < |(a~ [b]) — (c - [d])]
floor_hack: Lemma a — [b] > a - b
floor_hack_pr: Prove floor_hack from floor defn {z < b}
ceil_hack: Lemma c¢—d > ¢ — [d]

ceil_hack_pr: Prove ceil_hack from ceil_defn {z — d}

abshack4_pr: Prove abshack4 from
abs_ge0 {z — (a —b) — (c - d)},
absge0 {z — (a ~ b)) — (c ~ [d])},
floor_hack,
ceil_hack

X: Var Clocktime

ADJ_hack: Lemma wpred(i)(p) A
2 ADJy = X = efa(p, (Ap1 : O (p1) — ICL(£41) — X))

ADJ_hack_pr: Prove ADJ_hack from
ADJ_lem1,
translation_invariance
{y < (Ap1 — Clocktime : Ot (p) — IC,(tit1y),
X — —-X},
wpred fixtime
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delay_prec_enh_stepl_sym.pr: Prove delay_prec_enh_stepl_sym from
ADJ_hack {X « |s,]},
ADJ_hack {p — g, X < [sgl}.

abshackd {a — ADJ}, b — s, ¢ ADJ}, d — st}

abshacks: Lemma |((a — b) — (le] =) = (e = ) = ([g] = d))l
< (a—b) - (le) - D)l + (e = ) = (Tg] — )l

abshackb5_pr: Prove abshack5 from
abs.com {x —e—f, y— [g] — d}.
abs_plus {z — (a—b) = (lc] —d). y— ([g] —d) — (e — f)}

absfloor: Lemma |a — |b]| <la—bl+1
sbsceil: Lemma |a — [b]| < la—bl+1

absfloor_pr: Prove absfloor from
floor_defn {x « b}, |x 1| {z —a~— b}, | x 1] {z «— a—b}

absceil_pr: Prove absceil from
ceil defn {z — b}, | x1| {z —a~— b}, (x| {z—a- b}

abshack6a: Lemma |(a — b) — (lc| — d)] <l(a—b)—(c— d)| +1
abshack6b: Lemma |(e — f) — ([g] — A <le—f)—(g—dl+1

abshack6a_pr: Prove abshack6a from
absfloor {a — (a —b) +d, b c}.
abs_plus {x «— (a —b) — (c— d), y+— 1},
abs_ge0 {z — 1}

abshack6b_pr: Prove abshackéb from
absceil {a «— (e — f)+d. b g},

abs_plus {z — (e — f) — (g—d), y—1}
abs_ge0 {z — 1}

abshack7: Lemma |(a — b) — (¢ — d|<hnlle—f)—(g-— d)| <h
S |((a - b) = (le) = ) = (e = ) = ([g] = D) <2x(h+1)

abshack7_pr: Prove abshack? from abshackb, abshack6a, abshackéb
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prec_enh_hypl_pr: Prove prec_enh_hypl from
okay_pairs
{v = (Ap1: O3 (m) — ICL(£57) — L)),
0 —(Ap1: O (1) — Icl tl+1) [s31).
z— 2% (A +1),
ppred — wpred(7)},
delay_pred {q — p3@pl},
delay_pred {p «— q, q < p3©@pl},
reading_error3 {g — p3@pl},
reading_error3 {p — q, ¢ «— p3@pl},
good_read_pred_axl {g — p3@pl},
good_read_pred_ax1 {p — ¢, ¢ — p3@pl},
abshack?7
{a — 6, (ps0p1),
b IC;',(t;;“),
C— sp
4 Sepr
€ — 9”1( 3@p1),
[~ [Ci (t;“),
g — 9
h «— A }
wpred _fixtime,
wpred_fixtime {p «— q},
wpred_fixtime {p < p3@pl},
betaread_ax

abshack3: Lemma |(a — b) — (¢ — d)| = |(c — a) — (d — b)]
abshack3 pr: Prove abshack3 from abs_com {z < a—b, y « ¢ — d}

delay_prec_enh_pr: Prove delay_prec_enh from
delay_prec_enh_stepl,
delay_prec_enh_stepl {p « ¢, q — p},
delay_prec_enh_stepl_sym,
delay_prec_enh_stepl_sym {p «— ¢, q — p},
abs com {z «— ADJi - s]'j y — ADJ}: — si},

abshack3 {a « s}, b — sy, c— ADJ}, d — ADJ;}

q’

End delay2
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B.4 delay3

delay3: Module

Using arith, clockassumptions, delay2
Exporting all with clockassumptions, delay2
Theory

p,q,P1,q1: Var process
i: Var event
T: Var Clocktime
good_interval: function[process, event, Clocktime — bool] =
(Ap,i,T : (correct_during(p, s%,ic},“(T)) AT — ADJ;, > 8%
V (correct during(p, ics" (T), s3,) A §*>T — ADJ}))

recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(i)(p) A correct _during(p, t5™1, t5+?) A wpred(i + 1)(q)

) ‘S;‘)+1 _ S(i]+1| < 5/

good_interval_lem: Lemma
wpred(i)(p) A wpred (i + 1)(p) A ADJ pred(i + 1) D good_interval(p,i, S*™1)

betaprime_ax: Axiom

4xpx (R+a(|f + 2+ N +7([2+ (N + D], [F+2xN]) < 5

betaprime_ind_lem: Lemma
ADJ_pred(i + 1) A wpred(z)(p)
S24p*x(R+a(|f +2«A]))+m([2x (A +1)], |8 +2xAN]) <P

betaprime_lem: Lemma
2xpx (R+a(|f +2xA))+7([2* (A +1)], |8 +2xA])< 3

R.0_lem: Lemma wpred(:)(p) A ADJ _pred(i +1) D R >0

bound future: Lemma
delay_pred(i) A ADJ_pred(i + 1)
A wpred(2)(p)
A wpred(:)(g) A good_interval(p,i,T) A good_interval(q, i, T)
D |ickH (T) — iy (T)]
<hupx(IT = S|+ (| +2xA')))
Fw(2 (N D)) 18 + 25 A )

bound_futurel: Lemma
delay_pred(i) A ADJ_pred(i + 1) A wpred(i)(p) A good_interval(p, ¢, T)
> |(ich(T = ADJy) — s3) — (T = ADJ, — 5|
<px(IT - S+ a8 +2xA)))
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bound_futurel step: Lemma
delay_pred(i) A ADJ_pred(i + 1) A wpred(?)(p) A good_interval(p, i, T)
2 |(iep(T — ADJ) — st) — (T — ADJ, — SYH| < px (T - ADJ} — S|

bound_FIXTIME: Lemma
delay_pred(i) A ADJ_pred(i + 1)
A wpred(i)(p)
A wpred(7)(q)
A good_interval(p, i, S*+1) A good interval(q, 7, S*1)
D) ,S;)+l _ S;+1l < 6/

bound_FIXTIME2: Lemma
delay_pred(i) A ADJ_pred(i + 1) A wpred(i)(p) A wpred(i)(q)
> (wpred(i + 1)(p) A wpred(i + 1)(q) > |si*! - si*1] < )

delay_offset: Lemma wpred(4)(p) A wpred(é)(g) D [s!, — st < 3
ADJ.bound: Lemma wpred(i)(p) > |[ADJ}| < (|8 + 2+ A'))
Alpha_0: Lemma wpred(i)(p) > (|3’ + 2 * A'J)>0

Proof

ADJ_pred_Ir: Lemma
ADJ_pred(i + 1) O (wpred(i)(p) D |ADJ}| < (|8 + 2 A')))

ADJ_pred_Ir_pr: Prove ADJ_pred Ir from ADJ pred {i — i+ 1}

betaprime_ind_lem_pr: Prove betaprime_ind_lem from
betaprime_ax,
pos_product {z — p, y — R+ (| +2x A'|)},
rho_0,
R_FIX_SYNC_0,
FIX_SYNC,
ADJ_pred._lr,
[ % 1] {z « ADJ;}

betaprime_lem_pr: Prove betaprime_lem from
betaprime_ind_lem {p «— pQp4},
bnd_delay offset {i « i + 1},
wpred _ax,
count_exists {ppred «— wpred(i@pl), n «— N},
N_maxfaults

delay_offset_pr: Prove delay_offset from bnd_delay _offset, delay_pred

ADJ_bound_pr: Prove ADJ_bound from
bnd_delay offset {i « i + 1}, ADJ_pred {i —i+1}
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ay,b1,c1,d;: Var number

abs_0: Lemma |a;| < b Db 20

abs_0_pr: Prove abs_0 from | x 1| {z < a1}

Alpha_0_pr: Prove Alpha_0 from ADJ_bound, | x 1| {z « ADJ;,}
R.0.hack: Lemma wpred()(p) A ADJ_pred(i + 1) D Gitl 81> 0

R_0_hack_pr: Prove R_0_hack from
ADJ_pred {i — i+ 1},
FIXTIME_bound,
wpred_hi_lem, .
abs 0 {a) «+ ADJ}, b1 — al|f +2xA])}

R_0_lem_pr: Prove R.0_lem from R.0_hack, §*1, S*! {i — i+ 1}
abshack_future: Lemma |(a; — b1) — (c1 — d1)| = |(@1 — e1) — (by — d1)|
abshack_future_pr: Prove abshack_future

abs_minus: Lemma |a; — bi| < |a| + |&1]

abs_minus_pr: Prove abs_minus from
| % 1| {z < a1 — b1}, % 1] {z — a1}, [* 1] {z «— W}

bound_futurel_pr: Prove bound futurel from
bound_futurel_step,
abs_minus {a; — T — S, by — ADJ;},
ADJ_pred {i « i+ 1},
mult_leq_2
{z=»p

y — |T — ADJ} — S,

z—|T =S| +a(lf +2+ A}
rho_0

bound_futurel step_a: Lemma '
correct_during(p,ic;,(T — ADJ3), s;) ASt>T— ADJ,
> |(ici (T — ADJp) — sb) — (T - ADJL - SH)| < p* (IT - ADJ} - 8%)
bound_futurel step_b: Lemma

correct_during(p, si,,ici,(T - ADJ;,)) AT — ADJ:, > S¢
O |(ich (T - ADJY) — s) = (T — ADJE - SH < px (IT - ADJ: — S*)
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bound_futurel_ step_a_pr: Prove bound_futurel step_a from

RATE lemma2.iclock {T « T — ADJ:, S — S},
*2
Sul -

abshack_future
{a) « igL(T — ADJ;;),
b] — S;),
¢ —T — ADJE,
dl — Sl},
abs_com {z «— a;@p3 — ¢;@p3, y «— b;@p3 — d;@p3},
abs_com {r — T@pl, y — S@Qpl}

bound_futurel_step_b_pr: Prove bound _futurel step_b from
RATE lemma2_iclock {S «— T — ADJ}, T « S},
st
abshack _future
{ar —ic,(T — ADJ}),
b — s,
¢y —T — ADJ}.,
dl — Sl}

bound_futurel step_pr: Prove bound futurel_step from
good_interval, bound_futurel step_a, bound_futurel _step_b, iclock_ADJ_lem

good_interval lem_pr: Prove good_interval_tem from
good_interval {T « §*+1},
§22 (i — i+ 1},
wpred fixtime,
wpred_fixtime_low {i — i+ 1},
correct_during_trans {t « s;, to — t;“, 8 — sé“},
wpred _hi_lem,
FIXTIME bound,
ADJ_pred {i — i+ 1},
| % 1| {z — ADJ}}

bound_FIXTIME2 pr: Prove bound_FIXTIME2 from
bound _FIXTIME, good_interval_lem, good_interval_lem {p — g}

bound_FIXTIME_pr: Prove bound_FIXTIME from
bound_future {T « S*+1},
S*l
S*U{i— i+ 1},
abs_ge0 {z — R},
R_0_lem,
s¥2 {p—p@pl, i —i+1},
*2 N N :
s31 {p—q¢@Qpl, i —i+1},
betaprime_ind_lem
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bnd_delay offset_ind_b_pr: Prove bnd_delay_offset_ind_b from
bound_FIXTIME2 {p « p@p2, q «— q@Qp2},
delay_pred {i — i + 1},
delay_pred {p — p@p2, q — qQ@p2},
recovery_lemma {p — p@p2, ¢ — q@p2},
recovery_lemma {p «— ¢@p2, ¢q «— p@p2},
abs_com {z — s::&,z, Y — sf{éh},
wpred_preceding {p — p@p2},
wpred _preceding {p — ¢q@p2},
wpred_correct {i — i+ 1, p « pQp2},
wpred _correct {i — i+ 1, p «— q@p2}

a,b,c,d,e, f,g, h,aa,bb: Var number

abshack: Lemma |a — b|
<la—e)—(c—f-d)+|(b—g)—(c—h—d)
+[(e—g)—(f - h)

abshack2: Lemma |(a —e) — (¢ — f — d)| < aa
A(b—g)—(c—h—d)| <aaA|le—-g)—(f—h)|<bb
Dla—b <2%aa+bb

abshack2_pr: Prove abshack2 from abshack

abshack_pr: Prove abshack from
abscom {zx —b—g, y—c—h—-d},
absplus {r—(a—€e)—(c—f—d), y—(c—h-d)—(b—9g)}.
abs_plus {z «— z@p2 + y@p2, y — (e —g) — (f — h)}

bound _future_pr. Prove bound_future from
bound_futurel,
bound_futurel {p — g},
delay_prec_enh,
iclock_ADJ_lem,
iclock_.ADJ_lem {p < ¢},
abshack2
{a — ici(T — ADJ}),
b ici(T — ADJ}),
c—T,
d« S,
€ s;,, .
f— ADJ,
g < sg,
h«— ADJ,
aa — px (T — S| + (|8 + 2% N'))),
bb «— (|2 % (A + 1)), |8 + 2 A'])}

End delay3
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B.5 delay4

delay4: Module

Using arith, clockassumptions, delay3
Exporting all with clockassumptions, delay3
Theory

P.4,P1,q1: 'Var process

i Var event

X, S, T: Var Ciocktime

8,t,t1,t2: Var time

7: Var function[process — Clocktime]
ppred, ppredl: Var function[process — bool]
optionl, option2: bool

optionl_defn: Axiom
option] D P! = (i+ 1)« R+ TOA (B =2xp* (R — (S° -7+ 8)

option2_defn: Axiom _
option2 D T+ = (1 + 1)« R+ T° — ADJ,
AB=8 =25 px(s0 = T7))

options_disjoint: Axiom —(optionl A option2)

optionl_bounded delay: Lemma
optionl A wpred(%)(p) A wpred(i)(q) D [ttt — < p

option2_bounded_delay: Lemma A
option2 A wpred(7)(p) A wpred(i)(q) D It;:+l — té“] <g

optionl_bounded _delay0: Lemma
option1 A wpred(0)(p) A wpred(0)(q) D [td — <8

option2_bounded_delay0: Lemma
option2 A wpred(0)(p) A wpred(0)(g) D Itg -t <8

option2_convert_lemma: Lemma
(B=8 ~2xpx (50— TO)
D2xpx ((R—(S° = T") + (|8 +2xA']))
(25 (A + 1), |8 +2xA))
<8

option2_good_interval: Lemma
option2 A wpred(i)(p) D good_interval(p, i, (i + )« R+T%

options_exhausted: Axiom optionl V option2
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Proof

rts_2 hi_pr: Prove rts_2_hi from
options_exhausted, optionl_bounded _delay, option2_bounded delay

optionl_bounded_delay0_pr: Prove optionl_bounded_delay0 from
bnd_delay_init,
optionl_defn,
pos_product {z « p, Yy < S0 — 793,
pos_product {z — p, y — R — (S0 — TO)},
R_FIX_SYNC.O,
FIX_.SYNC,
rho_0

option2_bounded_delay0_pr: Prove option2_bounded_delay0 from
bnd_delay_init, option2_defn

optionl_bounded_delay_pr: Prove optionl_bounded_delay from
RATE lemmal_iclock {S « (i + 1) * R+T° T « S},
S*l ,
delay offset,
wpred _fixtime,
wpred_fixtime {p < g},
synctime_defn,

synctime_defn {p < g},

*2
Sul

it {p—a}

optionl _defn,
optionl_defn {p — q},
R_FIX.SYNC.O,
optionl_defn

option2_good_interval_pr: Prove option2_good_interval from
good_interval {T' — Tt + ADJ.},
wpred _fixtime,
wpred_hi_lem,
rts_new_1,
iclock ADJ_lem {T « T@pl},
synctime_defn,
Alpha 0,
option2_defn
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option2_convert_lemma_pr: Prove option2_convert_lemma from
betaprime_lem,
mult_ldistrib_minus

{z < p
y—R+a(lf +2xA)),
Z — (SO—TO)}

option2_bounded_delay_pr: Prove option2_bounded_delay from
option2 _convert_lemma,
option2_good _interval,
option2_good_interval {p — ¢},
bound_future {7« (i + 1) x R + T},
option2_defn,
option2_defn {p — q},
iclock_ADJ_lem {T « T@p4},
iclock ADJ_lem {T" — T@p4, p «— q},
synctime_defn,
synctime_defn {p — g},
S*l ‘
R_0O_lem,
bnd_delay _offset,
bnd_delay_offset {i — i + 1},
abs_ge0 {z — (R — (8° - T%)},
R_FIX.SYNC.0,
option2_defn

End delay4
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B.6 new_basics

new_basics: Module

Using clockassumptions, arith, delay3
Exporting all with clockassumptions, delay3
Theory

p,q: Var process

i,J, k: Var event

x,y,Y1,Y2, 2. var number

r, s, t,t1,t3: Var time

X,Y: Var Clocktime

(x1 f *2)[x3]: Definition function|process, process, event — process| =
(Ap,q,i: (if t, >t} then p else ¢ end if))

maxsync_correct: Lemma correct(p, s) A correct(q, s) D correct((p 1 )i], s)

minsync: Definition function|process, process, event — process| =
(Ap,g,i: (ift, > tfl then g else p end if))

minsync_correct: Lemma correct(p, s) A correct(g, s) D correct((p ¥ )[il, s)
minsync_maxsync: Lemma t%pﬂq)[i] < t%mq)[i]

ty3 .o: Definition function[process, process, event — time] =

(Ap,gq,i: t%vﬂq)[i])

delay_recovery: Axiom
rpred(i)(p) A wur_pred(i)(g) D It — t§*'] < 6

rtsO_new: Axiom wpred (i) (p)
St — 1 < (14 p) * (R+ (15 +2xA']))

rts1_new: Axiom wpred(%)(p) ' ‘
S ((R—a(lf +2x D)/ +p) St — 1

nonoverlap: Axiom 3 < ((R—a(|8 +2*A']))/(1+ 2)
lemma.1: Lemma wpred(i)(p) A wpred(i)(g) D th < té“
lemma.1.1: Lemma wpred(s)(p) A wpred(i + 1)(g) D th, < tg*!
lemma_1.2: Lemma wpred(i)(p) A wpred(i + 1)(g) D t;fr1 < ti+?

lemma_2_1: Lemma correct(q, tit!)
S ICH () = cfn(q, O5")
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rts_2_lo_i: Lemma
wpred(i + 1)(p) A\ wpred(i + 1)(¢) D [T — i1 < 3

rts_2_lo_i_recover: Lemma
rpred(2)(p) A wpred (i + 1)(g) D |t;')+1 - t;+1| <g

synctime_monotonic: Axiom i < j D tfl < tg

working_clocks_lo: Lemma
wpred(i + 1)(p) A t5+! <t A wpred(i)(q) D tfl <t

working_clocks_hi: Lemma
wpred(i)(p) At < £5*! Awpred(i + 1)(g) D t < ti*?

working _clocks_interval: Lemma
i > 0 A wpred(7)(p)
: ' i+l A 47 j+1
_/\wpre'd(j)(q)/\t; SIAE<GT A StAL<T]
Dt <AL < tit?

Proof

working_clocks_lo_pr: Prove working_clocks_lo from
lemma_l1l {p — q, ¢ — p}

working _clocks_hi_pr: Prove working_clocks_hi from lemma_1_2

rts_2 lo_i_recover_pr: Prove rts_2_lo_i_recover from
delay_recovery, wpred_preceding {p «- ¢}, wvr_pred {p — ¢}

rts_2_lo_.i_pr: Prove rts_2_lo_i from
rts_2_lo_i_recover,
rts 2 lo_i_recover {p — q, q < p}.
abs_.com {z — t3*!, y — tit1},
rts_2_hi,
wpred _preceding,
wpred_preceding {p «— ¢}

rts_2_lo_pr: Prove rts_2_io from rts_2_lo_i {i — pred(7)}, bnd_delay_init
maxsync_correct_pr: Prove maxsync_correct from (1 f} x2)[%3]
minsync_correct_pr: Prove minsync_correct from minsync
minsync_maxsync_pr: Prove minsync_maxsync from minsync, (*1 f} x2)[x3]

lemma_1_proof: Prove lemma_1 from
rts 2_hi, rtsl_new, | x 1| {z — t;*! — 2*1}, nonoverlap
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lemma_2_1_proof: Prove lemma_2_1 from
IClock defn {p — q, i — ¢+ 1, t — té—H}‘
adf}i {i —i+1, p—gq}

lemma_1_1_proof: Prove lemma_l1_1 from
rts_2_hi,
wpred_preceding {p < g},
delay_recovery {p < q, ¢ — p},
abs_com {z — t;;“, Y tfl“},

wvr_pred,

| % 1] {z — t;H — i1},
rtsl_new,

nonoverlap

femma_1_2_proof: Prove lemma_1_2 from
rts_2_hi,
wpred_preceding {p — q},
delay_recovery {p «— q, g — p},
abs_com {z — tit!, y — tit1},
wvr_pred,
|x 1| {z — 5! — it}
rtsl_new {p — q, i — i + 1},
nonoverlap

End new_basics
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B.7 rmax_rmin

rmax_rmin: Module

Using clockassumptions, arith, delay4, new_basics
Exporting all with clockassumptions, delay4
Theory

p.q: Var process

t,J, k: Var event

T, Y, Y1,Y2, 2. Var number

T, 8.t t1, ta: Var time

X,Y: Var Clocktime

rmax_pred: function|process, event — bool] =

(Ap,i: wpred(i)(p)
Dl < (1 +o)x (R4 a8 +2xA)))
rmin_pred: function|process, event — bool] =
(Ap.i:wpred(i)(p) , _
S ((B—al[F7+ 25N ))/(1+p)) < it —4)

ADJ recovery: Axiom optionl A rpred(é)(p) O fADJ;;] Sa(lf+2xA))
rmaxl: Lemma optionl O rmax_pred(p, 7)
rmax2: Lemma option2 O rmax_pred(p, i)
rminl: Lemma optionl > rmin_pred(p, i)
rmin2: Lemma option2 > rmin_pred(p, i)

Proof
rtsO_new_pr: Prove rtsO_new from options_exhausted, rmax1, rmax2, rmak_pred
rtsl_new_pr: Prove rtsl_new from options_exhausted, rminl, rmin2, rmin_pred
rmin2_0: Lemma option2 > rmin_pred(p, 0)
rmin2_plus: Lemma option2 > rmin_pred(p,i + 1)

rmin2_pr: Prove rmin2 from rmin2_0, rmin2_plus {i — pred(:)}
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rmin2_0_pr: Prove rmin2.0 from
rmin_pred {i — 0},
synctime0_defn,
synctime_defn {i < i@pl},
option2_defn {i — i@pl},
R.0,
RATE.2.iclock {i — i@pl, § « TP+, T — T°%,
wpred _correct {i «— i@pl},
div_ineq
{z—(1+p).
y — R— ADJ;°P!,
ze— R-—a(|f +2xN])}
rho.0,
ADJ_bound {i « i@pl},
| *x1] {z « ADJ;;@pl},
R_bound {i « i@pl},
wpred_hi_lem {i — i@pl},
Alpha_0 {i « @pl}

rmin2_plus_pr: Prove rmin2_plus from
rmin_pred {i «— i+ 1},
synctime_defn,
synctime defn {i — i@pl},
option2_defn {i — i},
option2_defn {i — i@pl},
RO,
RATE_2_iclock
{i « 1@pl,

S — T,'L;@pl‘Fl v

T — Ti®' + ADJ;},
wpred _correct {1 « i@pl},
div_ineq

{z = (1+p)

y — R— ADJ®P,

z—R—a(lf +2xA ]}
rho_0,
ADJ_bound {i — i@pl},
| x1| {& — ADJ°P'},
R_bound {i « i@pl},
wpred_hi_lem {i — i@Qpl},
Alpha_0 {i — i@pl},
iclock ADJ lem {i — i, T « T3P + ADJ}}

rmax2.0: Lemma option2 D rmax_pred(p, 0)

rmax2_plus: Lemma option2 D rmax_pred(p, ¢ + 1)
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rmax2_pr: Prove rmax2 from rmax2._0, rmax2_plus {i < pred()}

rmax2_0_pr: Prove rmax2_0 from
rmax_pred {i — 0},
synctimeO_defn,
synctime_defn {i — i@pl},
option2_defn {i «— i@p1},
R.0,
RATE. L.iclock {i « i@pl, § « Ti%1+1 p . 0}
wpred _correct {i — i@p1},
mult_leq_2
{z=(0+p),

y — R— ADJ®P!,

T—R+a(lf +2+A])},
mult.com {z — (T;9P1+1 _70) o (1 4 n}
rho 0,
ADJ_bound {i « i@p1},
| 1] {z — ADJI®'},
R_bound {i — i@p1},
wpred_hi_lem {7 — i@p1},
Alpha 0 {i — {@p1}

rmax2_plus_pr: Prove rmax2_plus from
rmax_pred {i «— i + 1},
synctime_defn,
synctime_defn {7 — j@pl},
option2_defn,
option2_defn {i — j@p1},
R_0,
RATE _1_iclock
{i — i@pl,

S — T;@pl%—l[

T — T;P' + ADJ},
wpred_correct {i «— i@pl},
mult_leq_2

{z = (1+p),

y — R— ADJiP,

T R+aflf +250))),
mult_com {z — (T;@lerl - (Tlf,@p1 + ADJ)), y — (1+ p)},
rho_0,

ADJ_bound {i « i@p1},

| % 1| {z — ADJi®P"},

R-bound {i — i@p1},

wpred_hi_lem {i — i@pl},

Alpha 0 {i «— i@pl},

iclock ADJ lem {i — i, T — 71 4 ADJ}
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rmin1_0: Lemma optionl D rmin_pred(p, 0)
rminl_plus: Lemma optionl D rmin_pred(p, i + 1)
rminl_pr: Prove rminl from rmin1.0, rminl_plus {i — pred (i)}

rmin1_0_pr: Prove rminl 0 from
rmin_pred {i — 0},
synctime0_defn,
synctime_defn {i — i@pl},
optionl_defn {i — i@Qpl},
R0,
RATE 2 iclock {i « i@pl, S« Tp*P'*1, T « 7%,
wpred_correct {i « i@pl},
Alpha_0 {i — i@pl},
divineq {z — (1+p), y— B = — R—a(|f +2x A}
rho 0

rminl_plus_pr: Prove rminl_plus from
rmin_pred {i < i+ 1},
synctime_defn,
synctime_defn {i «— i@Qpl},
optionl_defn,
optionl_defn {i — i@pl},
R0,
RATE 2 iclock
{i — 1@pl,

S — T;;@p1+1 ’

T — T;;@pl + ADJ;,}.
wpred _correct {i «— i@pl},
Alpha 0 {i «— i@pl},

div_ineq
{z=(1+0p)
y — R— ADJ,,
r— R—a(|f +2xN])}
rho 0,

R_bound {i « i@pl},

wpred_hi_lem {i « i@pl},

| x 1| {x ADJ},

ADJ_recovery,

ADJ _bound,

wpred_preceding,

iclock ADJ_lem {T Té@pl + ADJ:,}

rmax1_0: Lemma optionl D rmax_pred(p, 0)

rmaxl_plus: Lemma optionl 5 rmax_pred(p,i + 1)
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rmax1_pr: Prove rmax1 from rmax1.0, rmax1_plus {i — pred(z)}

rmax1_0_pr: Prove rmax1_0 from
rmax_pred {i < 0},
synctime0_defn,
synctime_defn {i — i@p1},
optionl defn {i — iQp1},
R0,
RATE Liclock {i — i@p1, S« Ti%+1 T . 70}
wpred _correct {i «— ;@pl},
Alpha 0 {i «— i@p1},
multleq2 {z — (1+p), y — R = — R+ a(|B + 2 AN}
mult.com {z — (T,*P!*! —T0), y — (1 4 p)},
rho_0

rmax1_plus_pr: Prove rmax1_plus from
rmax_pred {i « i 4 1},
synctime_defn,
synctime_defn {i — i@p1},
optionl _defn,
optionl_defn {i — i@pl},
R_0,
RATE _1_iclock
{i — i@p1,

S — T;)'H(llpl+l‘

T « T,°P' + ADJL},
wpred_correct {i — i@Qpl},
Alpha 0 {i — i@pl},

mult_leq_2
{z=(1+p),
y—R—-ADJ,

re— Rta(lf +2«A))},
mult.com {z — (T*P!+1 — (TioP1 1 ADJD), y — (1+ p)},
rho_0,
R bound {i — i@p1},
wpred_hi_lem {i — {@pl},
[* 1| {z ADJ;},
ADJ _recovery,
ADJ_bound,
wpred _preceding,
iclock ADJ_lem {T" — T,%! + ADJi}

End rmax_rmin
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Appendix C

Fault-Tolerant Midpoint Modules

This appendix contains the EHDM modules and proof chain analysis showing that the
properties of translation invariance, precision enhancement, and accuracy preservation
have been established for the fault-tolerant midpoint convergence function. In the interest
of brevity, the proof chain status has been trimmed to show just the overall proof status
and the axioms at the base.

C.1 Proof Analysis

é.l.l Proof Chain for Translation Invariance

Terse proof chain for proof ft_mid_trans_inv_pr in module mid

== SUMMARY ===

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.funsort_trans_inv
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.floor_defn
ft_mid_assume.No_authentication

Total: 6
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C.1.2 Proof Chain for Precision Enhancement

Terse proof chain for proof ft_mid_precision_enhancement_pr in module mid3

=== ======== SUMMARY === ==
The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq
clocksort.cnt_sort_leq
division.mult_div_1
division.mult_div_2
division.mult_div_3
floor_ceil.ceil_defn
floor_ceil.floor_defn
ft_mid_assume.No_authentication
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction

Total: 11

C.1.3 Proof Chain for Accuracy Preservation

Terse proof chain for proof ft_mid_acc_pres_pr in module mid4

= = SUMMARY ===== ===

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq
clocksort.cnt_sort_leq
clocksort.funsort_ax
division.mult_div_1
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division.mult_div_2

division.mult_div_3

floor_ceil.floor_defn

ft_mid_assume.No_authentication

multiplication.mult_pos

noetherian[EXPR, EXPR] .general_induction
Total: 10
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C.2 mid

mid: Module

Using arith, clockassumptions, select_defs, ft_mid_assume
Exporting all with select_defs

Theory

process: Type is nat

Clocktime: Type is integer

l,m,n,p,q: Var process

¥: Var function[process — Clocktime]

i, 7,k Var posint

T,X,Y,Z: Var Clocktime

¢fnarrp: function[process, function[process — Clocktime] — Clocktime] =

(AP0 [(Dpary + Y1) /2))
ft_mid_trans_inv: Lemma cfrpip(p (A g:9(g) + X)) = cfrpip(p,9) + X
Proof
add_assoc_hack: Lemma X +Y + Z + Y = (X+2Z)+2xY
add_assoc_hack_pr: Prove add_assoc_hack from %1 % 2 {r—2 y~VY}

ft_mid_trans_inv_pr: Prove ft_mid_trans_inv from
cfrarip
cfrperp {9 — (A gq:9(g) + X)},
select_trans_inv {k — F + 1},
select_trans_inv {k «— N — F},
add_assoc_hack {X — 19(F+1), Z — 19(N_p), Y — X},
div¥distrib {CL‘ — (19(p+1) + ﬁ(N,F)), Y — 2*X, Z — 2},
div_cancel {z « 2, y « X},
ft_mid_maxfaults,
floor_plus_int {z — z@p6/2, i — X}

End mid

101



C.3 mid2

mid2: Module

Using arith, clockassumptions, mid
Exporting all with mid
Theory

Clocktime: Type is integer

m,n,p,q,P1,q1: var process

i,j,k,l: Var posint

z,y,z,T,8,t Var time

D, X,Y,Z, R,S,T: Var Clocktime

9,0,~: Var function[process — Clocktime]

ppred, ppred1, ppred2: Var function[process — bool]

good_greater_F1: Lemma
count(ppred, N) > N — F > (3p: ppred(p) A 9(p) = Y (F41))

good_less_NF: Lemma
count(ppred, N) > N — F > (3p: ppred(p) A9(p) < In-F))

Proof

good_greater_F1_pr: Prove good _greater_F1 {p «— p@p3} from
count_geq_select {k — F +1},
ft_mid_maxfaults,
count_exists
{ppred — (A p1 : ppred1@p4(p1) A ppred2@p4(py)),
n«— N},
pigeon_hole
{ppred1 «— ppred,
ppred2 « (Ap1: 9(p1) = F(Fi1)),
n « N,
k—1}
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good_less NF_pr: Prove good_less_NF {p — pQ@Qp3} from
count_leq.select {k — N — F},
ft_mid_maxfaults,
count_exists
{ppred — (A p; : ppred1@p4(p,) A ppred2@p4(py)),
n«— N},
pigeon_hole
{ppredl « ppred,
ppred2 — (Ap1: dn_p) > I(py)),
n— N,
k «— 1}

End mid2
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C.4 mid3

mid3: Module

Using arith, clockassumptions, mid2
Exporting all with mid2
Theory

Clocktime: Type is integer

m,n,p,q,P1,q1. var process

i,j,k,l: Var posint

z,y,2,7,8,t: Var time

D,X,Y,Z,R,S,T: Var Clocktime

9,6, ~: Var function[process — Clocktime]

ppred, ppred1, ppred2: Var function[process — booll

ft_mid_Pi: function[Clocktime, Clocktime — Clocktime] ==
(AX,Z:[Z/2+ X1)

exchange_order: Lemma
ppred(p) A ppred(q)
A 8(q) < 0(p) A~v(p) < ¥(q) A okay.pairs(8, 7, X, ppred)
D 8(p) — (@) < X

good_geq_F_addl: Lemma
count(ppred, N) > N — F > (3p: ppred(p) A 9(p) 2 (r+1))

okay_pair_geq_F_add1l: Lemma
count(ppred, N) > N — F A okay_pairs(, v, X, ppred)
D> (3pnar:
ppred(p1) A 8(p1) = O(F 1)
A ppred(qr) A (@) > vFen A O(01) — (@) < X)

good_between: Lemma
count(ppred, N) > N — F
> (3p: ppred(p) Ayrsn) = 7(P) AO(P) 2 Ov-r)
ft_mid_precision_enhancement: Lemma
count(ppred, N) > N — F
A okay_pairs(6,, X, ppred)
A okay_Readpred (8, Z, ppred) A okay_Readpred (v, Z, ppred)
S lefnprp(p.0) — cfnngrp(a, )| < femid Pi(X, Z2)
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ft_mid_prec_enh_sym: Lemma
count(ppred, N) > N — F
A okay_pairs(8, v, X, ppred)
A okay_Readpred(8, Z, ppred)
A okay_Readpred(, Z, ppred) A (cfrp g p(p, 0) > cfrarrple, )
2 lefanrip(p,0) = cfnperp(g,7)] < femid-Pi(X, Z)

ft_mid_eq: Lemma count(ppred, N)Y>N-F
A okay_pairs(, v, X, ppred)
A okay_Readpred (6, Z, ppred)
A\ okay_Readpred(, Z, ppred) A (cfns p(p,8) = cfnrgp(q,7))
D lefrarin(p.0) ~ cfaprplg,v)| < ftmid Pi(X, Z)

ft_mid_prec_syml: Lemma
count(ppred, N) > N — F
A okay _pairs(6, v, X, ppred)
A okay_Readpred(6, Z, ppred)
N okay_Readpred(~, Z, ppred)
MO F+) +0v-F) > (Vo) + Yv—r))
DHOE ey +ON-F) ~ (Ve +yv-r)| < Z+2x X

mid_gt_imp_sel_gt: Lemma
(cfrpgip(p.0) > cfnprn(g,y))
D ((Orrny +On_p) > (vpy) + YN-F)))

okay_pairs_sym: Lemma
okay pairs(#, v, X, ppred) D okay _pairs(vy,, X, ppred)

Proof

ft_mid_prec_sym1_pr: Prove ft_mid_prec_sym1 from
good _between,
okay_pair_geq_F_add1,
good_less NF {i§ — ~},
abs_geq
{z — (v(010p2) — v(p@p3)) + (B(p@p1) — y(p@pl))
+ (0(p1©@p2) — v(q1@p2)),
y = O +0n-r) ~ (WFey + vv-m) )
abs_plus
{z = (7(1@p2) — v(p@p3)) + (8(p@pl) — v(p@p1)),
y — (6(p1@p2) — 7(q:1@p2))},
abs_plus {z — (v(q10p2) — ~(p@p3)), y — (6(p@p1) — y(p@p1))},
okay_pairs {y — 0, 6 — v, z — X, p3 — pQpl}, :
okay_Readpred {y — v, y « Z, | — q@p2, m — p@Qp3},
distrib {z 1, y — 1, z « X},
mult_lident {z — X}
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mid_gt_imp_sel_gt_pr: Prove mid_gt_imp_sel_gt from
cfaprp {9 — 0}
efaperp {9 — 1. p—ab
mult_div {1‘ — (H(F-H) + G(N—F))v y « 2},
multdiv {z — (Y F+1) +Yv-F)) ¥ < 2}
mult_floor_gt {z — x@p3/2, y «— zQp4/2, z — 2}

ft_mid_eq_pr: Prove ft_mid_eq from
count_exists {n «— N},
ft_mid_maxfaults,
okay_pairs {y «— 0, 8 — v, T+ X, p3 « pQpl},
okay_Readpred {y <7, y < Z, | — p@pl, m «— p@pl},
| % 1] {z — cfaprrp(P:8) — cfrarrn(@ M
| % 1] {z « y(p@p1) - ¥(p@P1)},
| % 1| {z < 8(p@p1) — v(p@p1)},
ceil_defn {z «— Z/2+ X},
div_nonnegative {z «— Z, y « 2}

ft_mid_prec_enh_sym_pr: Prove ft_mid_prec_enh_sym from
cfapgrp {0 — 0},
cfaprrp {9 = P g},
div_minus_distrib
{x — (Bps1) +ON-F))
y — (vF+1) FUN-F))
z «— 2},
abs_div
{z — (O +Ov-r) — (F+1) YN-F)):
y — 2},
ft_mid_prec_sym1,
mid_gt_imp_sel_gt,
div_ineq
{z — |Bps1) + Ov-rFy) — (YFn) + YN -P))l,
y— Z+2xX,
z « 2},
div_distrib {z — Z, y — 2% X, z < 2},
div_cancel {z « 2, y — X},
abs_floor_sub_floor_leq_ceil
{z «— z@p3/2,
y < y@p3/2,
22— Z[2+ X}

okay_pairs_sym_pr: Prove okay_pairs_sym from
okay_pairs {y «— 8, 0 —, z— X, p3 — p3@p2},
okay_pairs {y — 7, 0« 0, T — X1,
abs_com {z « 6(p3@p2), y — v(p3©@p2)}
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ft_mid-precision_enhancement_pr: Prove ft_mid_precision_enhancement from
ft_mid_prec_enh_sym,
ft_mid_prec_enh_sym
{p — q@p1,

q — pQpl,

f — y@pl,

v« 60pl},
ft_mid_eq,
okay_pairs_sym,
abs_com {z frrip(p,6). y — ¢frrrrp(q. )}

okay_pair_geq_F_add1_pr: Prove
okay_pair_geq_F_add1
{p1 — if (8(p@p2) > 4(p@p1))
then p@p2
elsif (y(p@p1) > 7(p@p2)) then p@pl else p@Qp3
end if,
@ — if (0(pQp2) > 6(p@p1))
then p@p?2
elsif (y(p@pl1) > v(p@p2)) then p@pl else q@p3
end if} from
good_geq_F_add1 {9 — 6},
good_geq_F_addl {9 « ~},
exchange_order {p «— p@p1, q — p@p2},
okay_pairs {y — 0, § — ~, z — X, p3 < pQpl},
okay_pairs {y — 8, § — ~, z — X, p3 «— pQp2}

good_geq_F_add1_pr: Prove good_geq_F_add1 {p — p@pl} from
count_exists
{ppred — (A p: ((ppred1@p2)p) A ((ppred2@p2)p)),
n— N},
pigeon_hole
{n — N,
k1,
ppredl « ppred,
ppred2 — (Ap 1 9(p) > D (raps)) },
count geq.select {k — F + 1},
ft_mid_maxfaults
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good_between_pr: Prove good_between {p — p@pl} from
count_exists
{ppred — (A p : ((ppred1@p2)p) A ((ppred2@p2)p)),
n— N},
pigeon_hole
{n+< N,
k1,
ppredl « (Ap : ((ppred1@p3)p) A ((ppred2@p3)p)).
ppred2 «— (Ap: 6(p) > O((rapay)}
pigeon_hole
{n < N,
k — kQpb5,
ppredl — ppred,
ppred2 — (Ap : Y(keps) = V(P)},
count_geq.select {9 — 0, k — N — F},
count_leq_select {¥ « v, k — F + 1},
No_authentication

exchange_order_pr: Prove exchange_order from
okay_pairs {y < 8, 8 — v, T — X, p3 P},
okay_pairs {y « 6, 8 — v, T — X, p3 qa}
abs_geq {z — (8(p) — 7(p)). ¥« 8(p) — ()},
abs_geq {z — (v(g) — 6(2)). y < v(q) — 0(P)},
abs_com {z < 6(q), y — v(9)}.
abs_com {z « 6(p). y < ()}

End mid3
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C.5 mid4

mid4: Module

Using arith, clockassumptions, mid3
Exporting all with clockassumptions, mid3
Theory

process: Type is nat

Clocktime: Type is integer

m,n,p,q,p1,q: Var process

2,7, k: Var posint

r,y,z, 78t Var time

D, X,Y,Z R, S, T: Var Clocktime

Y,6,v: Var function|process — Clocktime]

ppred, ppredl, ppred2: Var function[process — bool]

ft_mid_accuracy_preservation: Lemma
ppred(g) A count(ppred, N} > N — F A okay_Readpred(#, X, ppred)

D lefrarip(p,9) —9(g)| < X
ft_mid_less: Lemma cfrprrp(p, V) < Yry)
ft_mid_greater: Lemma cfrprrp(p, ) > Y N-F)

abs_q_less: Lemma
count(ppred, N) > N — F > (3 p; : ppred(p;) A 9(p1) < frprp(p, 9))

abs_q_greater: Lemma
count(ppred, N) > N — F > (3p; : ppred(p1) A ¥(p;) > cfrperp(p, 9))

ft_mid_bnd_by_good: Lemma
count(ppred, N) > N —
2> (31 = pered(pr) A lefrggp(p, 9) — 9(q)] < [9(py) — Haq)l)

maxfaults_lem: Lemma F + 1 <N-F
ft_select: Lemma Vreny > ﬁ(N_p)
Proof

ft_select_pr: Prove ft select from
selectax {t — F+1, k— N — F'}, maxfaults_lem

maxfaults_lem_pr: Prove maxfaults_lem from ft_mid_maxfaults
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ft_mid_bnd_by_good_pr: Prove
ft_mid_bnd_by_good
{p1 — (if cfnprrp(P9) 2 ¥(g) then p;@pl else p@p2 end if)} from
abs_q_greater,
abs_q_less,
abs_com {z — ¥(q), y — 9(p1 @)},
abs_com {z — ¥(q). ¥ < cfrrrp(P,9)}
abs_geq {x — z@p3 — y@p3, y — r@p4 — yQ@p4},
abs_geq {z — 9(p1@c) — 3(q), ¥ — cfanrp(®,9) = ¥(q)}

abs_q_less_pr: Prove abs_q_less {p; < p@pl} from
good_less_NF, ft_mid_greater

abs_q_greater_pr: Prove abs_q._greater {p <« p@pl} from
good _greater_F1, ft_mid_less

mult_hack: Lemma X + X =2x X
mult_hack_pr: Prove mult_hack from x1 *xx2 {z — 2, y — X}

ft_mid_less_pr: Prove ft_mid_less from
cfamip
ft_select,
div_ineq
{z — OFs1) +IN-F)),

y + (Irs1) + Fpen),

z « 2},
div_cancel {z — 2, y — dFin}
mult_hack {X — 9Fsn}
floor_defn {z «— z@p3/2}

ft_mid_greater_pr: Prove ft_mid_greater from
cfrpmip
ft_select,
div_ineq
{z — Ow_rF) +ON-F)):

y — (9(Fs1) +IN-F))

z — 2},
div_cancel {z — 2, y — -}
mult_hack {X —dn-F)}
floor-mon {x «— z@p3/2, y — y@p3/2},
floor_int {i «+ X@p5}

ft_mid_acc_pres_pr: Prove ft_mid_accuracy_preservation from
ft_mid_bnd _by_good,
okay_Readpred {y «— 9, y — X, | «— p1@pl, m «— qQ@c}

End mid4
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C.6 select_defs

select_defs: Module

Using arith, countmod, clockassumptions, clocksort
Exporting all with clockassumptions

Theory

process: Type is nat

Clocktime: Type is integer

l,m,n,p,q: Var process

¥: Var function|process — Clocktime]

t, 7, k: Var posint

T,X,Y,Z: Var Clocktime

*L(x2): function{function[process — Clocktime], posint — Clocktime] ==

(A9,i: Y(funsort(9)(4)))

select_trans_inv: Lemma k < N 5 (Ag:9(q) + X)) =Py + X

select_existsl: Lemma i < N O (Ip:p< NAY(p) = Y3a))

select exists2: Lemma p < N > (Fi:i < NAS(p) = 9y))

select_ax: Lemma 1 SiINI<kAkE<NO>D 19(,-) > 19(k)

count_geq.select: Lemma k < N 5 count((Ap: J(p) > Yy N) > k

count_leq_select: Lemma k& < N 5 count((Ap: 9 > 9(p)),N) >N —k +1
Proof

select_trans_inv_pr: Prove select_trans_inv from funsort_trans_inv

select_exists1_pr: Prove select_existsl {p « funsort(9)(:)} from
funsort_fun_1.1 {j « 4}

select_exists2_pr: Prove select_exists? {i «— i@pl} from funsort_fun_onto
select_ax_pr: Prove select_ax from funsort_ax {i «— i@c, J « kQc}
count_leq_select_pr: Prove count_leq_select from cnt_sort_leq
count_geq_select_pr: Prove count_geq_select from cnt_sort_geq

End select_defs
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C.7 ft_mid_assume
ft_mid_assume: Module
Using clockassumptions
Exporting all with clockassumptions
Theory
ft_mid_maxfaults: Axiom N > 2 x F+1
No_authentication: Axiom N >3 F +1

Proof

ft_mid_maxfaults_pr: Prove ft_mid_maxfaults from No_authentication

End ft_mid_assume
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C.8 clocksort

clocksort: Module

Using clockassumptions

Exporting all with clockassumptions
Theory

[,m,n,p,q: Var process
t,J,k: Var posint
X,Y: Var Clocktime
¥: Var function[process — Clocktime]
funsort: function[function[process — Clocktime]
— function[posint — process]]
(* clock readings can be sorted *)

funsort_ax: Axiom i <jAj <N > D(funsort(d9)(2)) > J(funsort(9)(5))

funsort_fun_1_1: Axiom
t <N Aj<NAfunsort(9)(i) = funsort(9)(5) > i = j A funsort(d9)(i) < N

funsort_fun_onto: Axiom p < N 5 (Fi:4 < N Afunsort(d) (i) = D)

funsort trans_inv: Axiom
k< N D (9(funsort(( A q: 9¥(q) + X))(k)) = d(funsort(d) (k)))

cnt.sort_geq: Axiom k < N D count((Ap: ¥(p) > Y(funsort(d)(k))), N) > k

cnt_sort_leq: Axiom
k<N Dcount({(Ap: F(funsort(9)(k)) > 9(p)), N) > N —k+1

Proof

End clocksort
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Appendix D

Utility Modules

This appendix contains the EHDM utility modules required for the clock synchroniza-
tion proofs. Most of these were taken from Shankar’s theory (ref. 10). The induction
modules are from Rushby’s transient recovery verification (ref. 17). Module countmod
was substantially changed in the course of this verification and is therefore much different
from Shankar’s module countmod. Also, module floor_ceil added a number of useful prop-
erties required to support the conversion of Clocktime from real to integer. In Shankar’s
presentation Clocktime ranged over the reals.
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D.1 multiplication
multiplication: Module
Exporting all

Theory

T, Y, 2,X1,Y1, 21, T2, Y2, 22! Var number
*1 % *x2: function[number, number — number] = (Az,y: (z % y))

mult_Idistrib: Lemma z x (y + 2) = z * Yy+zxz
mult_Idistrib_minus: Lemma z * (y — 2)=Txy—zT*x2
mult_rident: Lemma z+1 = ¢
mult_lident: Lemma 1 xz = x
distrib: Lemma (z + y) » 2z = Txz+yxz
distrib.minus: Lemma (z — y) xz = 2% 2 — Y*xz
mult_non_neg: Axiom ((z >0Ay>0)V (r < 0Ny <0)©ezxy>0
mult_pos: Axiom ((z >0Ay > 0)V (z < ONy<0)ezxy>0
mult_com: Lemma zxy =y xx
pos_product: Lemma z > 0 Ay > 0 D zxy >0
mult_leq: Lemma z > 0Az >y Drxz > y*z
mult_leq 2: Lemma z > 0 A z > YDzxI > z2xy
mult_10: Axiom O+xz =0
mult gt: Lemma 2 > 0Az>yDzxz > Y*z
Proof

mult_gt_pr: Prove mult_gt from
mult_pos {z — z —y, y « 2}, distrib_minus

distrib_minus_pr: Prove distrib_minus from
mult_Idistrib_minus {z «— 2, y — z, 2 — v},
mult_com {z —z —y, y « 2},
mult_com {y « z},
mult_com {z —y, y « 2}
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mult_leq_2_pr: Prove mult_leq 2 from
mult_ldistrib_minus {x « 2, ¥ — &, z < ¥},
mult_non_neg {x «— z, y — T —y}

mult_leq_pr: Prove mult_leq from
distrib_minus, mult_non_neg {z «— = —y, ¥ < z}

mult_com_pr: Prove mult_com from x1 % %2, x1xx2 {z—y, y— 2}
pos_product_pr: Prove pos_product from mult_non_neg
mult_rident_proof: Prove mult_rident from 1 % 2 {y — 1}
mult_lident_proof: Prove mult_lident from 1 x x2 {z « 1, y—x}

distrib_proof: Prove distrib from
*xlxx2 {z —z+y ¥y 2z}
*x1 x %2 {y «— 2},
*xlxx2 {z—y, y— 2}

mult_ldistrib_proof: Prove mult_ldistrib from
slx#x2 {y —y+z T} xLxx2, x1xx2 {y « 2}

mult_ldistrib_minus_proof: Prove mult_ldistrib_minus from
wlxx2 {y —y—2 T T} *Lrr2, x1xx2 {y — 2}

End multiplication
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D.2 division

division: Module

Using multiplication, absmod, floor_ceil

Exporting all

Theory
T,Y,2,T1, Y1, 21, T2, Y2, 22 Var number
mult div_1: Axiom z #0 > z % y/z=xx(y/z)
mult.div.2: Axiom z # 0D zxy/z = (z/z)*y
mult_div_3: Axiom z # 0D (z/z) = 1
mult_div: Lemma y # 0 D (z/y) xy = z
div.cancel: Lemma z # 0 D z % y/z=y
div_distrib: Lemma z # 0 > ((z + y)/z) = (z/2) + (y/2)
ceil.mult div: Lemma y > 0> [z/y] «y > z
ceil_plus_mult_div: Lemma y > 0 5 [z/yl +1xy >z
div_nonnegative: Lemma z > 0Ay > 0 D (z/y) >0
div_minus_distrib: Lemma 2 # 0 > (z — y)/z=(z/2) ~ (y/z)
div.ineq: Lemma 2z > 0Az <y > (z/z) < (y/z)
abs_div: Lemma y > 0 > [z/y| = |z|/y
mult_minus: Lemma y # 0 > —(z/y) = (—z/y)
div.minus_.1: Lemmay > 0Az < 0D (z/y) <0

Proof

div_nonnegative_pr: Prove div_nonnegative from
mult_non_neg {z — (if y # 0 then (z/y) else 0 end if)}, mult div
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div_distrib_pr: Prove div_distrib from
multdivl {z—z+y y—1 2+ z},
mult_rident {z — = + ¥},
multdiv.l {z —z, y— 1, z+ 2},
mult_rident,
mult.divl {z —y, y—1, 2+ z}
mult_rident {z — ¥},
distrib {z « ( if z # 0 then (1/2) else 0 end if)}

div_cancel_pr: Prove div_cancel from
mult_div2 {z — z}, multdiv.3 {z — z}, mult_lident {z « y}

mult_div_pr: Prove mult_div from
mult_div_2 {z — y}, multdiv.l {z < y}, mult.div_3 {z — y}, mult_rident

abs_div_pr: Prove abs_div from
|x1] {z « (ify # 0 then (x/y) else 0 end if)},
| =1},
div_nonnegative,
div_minus_1,
mult_minus

mult_minus_pr: Prove mult_minus from
multdiv.l {z — =1, y T, 2 v},
x1 %2 {r -1, y <z},
sl %52 {z — —1, y— (if y #0 then (z/y) else 1 end if)}

div_minus_1_pr: Prove div_minus_1 from
mult_div,
pos_product {z « (if y # 0 then (z/y) else 0 end if), y < y}

div_minus_distrib_pr: Prove div_minus_distrib from
div_distrib {y — —y}, mult_.minus {z —y, y — z}

div_ineq_pr: Prove div._ineq from
mult_div {y < z},
mult_div {z — y, ¥ — z},
mult_gt
{z « (if z# 0 then (z/z) else 0 end if),
y « ( if 2 # 0 then (y/z) else 0 end if)}

ceil_plus_mult_div_proof: Prove ceil_plus_mult_div from
ceil_mult_div,
distrib
{x « [(if y # 0 then (z/y) else 0 end if)],
y 1,

z2—yh
mult_lident {z — ¥}
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ceil_mult_div_proof: Prove ceil_mult_div from
mult_div,

mult_leq
{z — [(if y # 0 then (z/y) else 0 end if)],

y — (if y # 0 then (z/y) else 0 end if),
z —y},

ceil defn {z « (if y # 0 then (z/y) else 0 end if)}
End division
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D.3 absmod
absmod: Module
Using multiplication
Exporting all
Theory

T, Y, 2, L1, Y1, 21, L2, Y2, 22 Var number

X: Var integer

| x 1|: Definition function[number — number] =
(Az:(if z <0 then —x else z end if))

iabs: Definition function[integer — integer] =
(A X :(if X <0 then — X else X end if))

iabs.is.abs: Lemma z = X D iabs(X) = |z|

abs.main: Lemma |z| < zD (z <zV —T < z)

abs_leq 0: Lemma |z —y| < 2D (x—y) <z

abs_diff: Lemma |z —y| <z D ((z - y)<zV(y—z)<z)
abs_leq: Lemma |z| <z D (x <2V -2 < z)

abs_bnd: LemmaOSz/\OSx/\mSz/\OSy/\ySzD |z —y| <2
abs.1.bnd: Lemma |z —y|<zDx<y+=2

abs 2 bnd: Lemma |z —y|<zDx2y— 2

abs 3. bnd: Lemmaz <y+zAT2Yy— 22 lz —y| <2
abs_drift: Lemma |z —y| < zA|z1 — g <z Dl -yl <zta
abs.com: Lemma |z —y| = |y — x|

abs_drift_2: Lemma
lm—ylgz/\lml—ﬂ Szl/\lyl—y|§zzjlx1—y1| <z+ 21+ 2

abs.geq: Lemma z > yAy 20D |z} > |yl

abs_ge0: Lemma z > 0D lz| ==

abs_plus: Lemma |z +y| < lz] + |yl

abs.diff 3: Lemmaz —y <zAy—Z <22 |z —y| <2

Proof
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iabs_pr: Prove iabs_is_abs from |« 1|, iabs

abs_plus_pr: Prove abs_plus from | {z—z+y} |x1],|*1] {z — v}
abs_diff 3_pr: Prove abs_diff_3 from [* 1] {z — z —y}

abs_ge0_proof: Prove abs_ge0 from | x 1]

abs_geq_proof: Prove abs_geq from [*1], [*1] {z <y}

abs_drift_2_proof: Prove abs_drift_2 from
abs_drift,
abs drift {z — y, y — y;, 2 — 22, 21« 2+ 21},
abs_com {z — y;}

abs_com_proof: Prove abs_com from [* 1 {z — (x—y)}, |*1] {z — (y—=x)}

abs_drift_proof: Prove abs_drift from
abs_1_bnd,
abs 1bnd {z — 2, y — 1z, 2 — 21},
abs_2_bnd,
abs2.bnd {r — 2|, y — z, z — 21},
abs 3.bnd {2 — 1), z — 2 4 2}

abs_3_bnd_proof: Prove abs_3_bnd from | % 1] {z — (z — y)}

abs_main_proof: Prove abs_main from | % 1]

abs_leq_0_proof: Prove abs_leq 0 from | 1| {z — z — y}

abs_diff_proof: Prove abs_diff from [*1] {z — (z —y)}

abs_leq_proof: Prove abs_leq from | x 1]

abs_bnd_proof: Prove abs_bnd from | % 1] {z — (z - y)}

abs_1_bnd_proof: Prove abs 1 _bnd from [* 1] {z — (z - y)}

abs_2_bnd_proof: Prove abs_2 bnd from [*1] {z — (z - y)}
End absmod
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D.4 floor ceil
floor_ceil: Module
Using multiplication, absmod
Exporting all
Theory
i,7: Var integer
T, Y, 2, T1, Y1, 21, L2, Y2, 22 Var number
[«1]: function[number — int]
ceildefn: Axiom [z] >z A[z] —1<z
|x1]: function[number — int]
floor.defn: Axiom |z| <z Alz|+1>%
ceil_geq: Lemma [z] > =
ceil_mon: Lemma z >y D [z] > [y]
ceil_int: Lemma [i] =1
floor_leq: Lemma |z| <z
floor.mon: Lemma z <y D |z] < |y]
floor_int: Lemma |i] =1
ceil_plus_i: Lemma [z] +i=2z+1iA [x] +i—-1<z+1
ceil_plus_int: Lemma [z] +i= [z + 1]
int_plus_ceil: Lemma i + [z] = [i+ z]
floor_plus_i: Lemma |z] +i <z +1A lz] +i+1>z+1
floor_plus_int: Lemma || +1 = |z + 1]
neg_floor_eq_ceil_neg: Lemma —|z] = -]
neg_ceil_eq_floor_neg: Lemma —[z] = |—=z]
ceilsum: Lemma [z] + [y] < [z +y] +1
abs._ceil_sum: Lemma |[z] + [y]| < |[z +yl| +1
floor_sub_floor_leg_ceil: Lemma z —y < z D lz] - Ly < (2]

abs floor_sub_floor_leq_ceil: Lemma |z — yl<zollz] -l < [2]
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floor_gt_imp_gt: Lemma |z| > Wyl Dzx>y

mult floor gt: Lemma z > 0 A |z] > Wl Dzxz>yxz

Proof

mult_floor_gt_pr: Prove mult_floor_gt from floor_gt_imp_gt, mult_gt

floor_gt_imp_gt_pr: Prove floor_gt_imp_gt from
floor_defn, floor_defn {z — y}

floor_sub_floor_leq_ceil_pr: Prove floor_sub_floor_leq_ceil from
floor_defn, floor_defn {z «— y}, ceil_defn {z « 2}

abs_floor_sub_floor_leq_ceil_pr: Prove abs_floor_sub_floor_leq_ceil from
floor_defn,
floor_defn {z « yh
ceil defn {z — 2},
| %1 {z — 2~ y},
I * 1] {z — 2] - |y}

int_plus ceil_pr: Prove int_plus_ceil from ceil_plus_int

ceil_geq.pr: Prove ceil_geq from ceil_defn

ceil_mon_pr: Prove ceil_mon from ceil_defn, ceil_defn {z « y}
floor_teq_pr: Prove floor_leq from floor_defn

floor_mon_pr: Prove floor_mon from floor_defn, floor defn {z — y}
ceil_eq_hack: Sublemma i > rAi—1 <TAjJZ2zZAj-1<zxDi=j
ceil_eq_hack_pr: Prove ceil_eq_hack

ceil_plus_i_pr: Prove ceil_plus_i from ceil defn

ceil_plus_int_pr: Prove ceil_plus_int from
ceil_plus_i,
ceil defn {z — z + 4},
ceil eq_hack {z —z+4, i [z] 44, j — [z +1]}

floor_eq_hack: Sublemma i < z A + 1 >TAJ<zTAj+1>xzDi=j
floor_eq_hack_pr: Prove floor_eq_hack

floor_plus_i_pr: Prove floor_plus_i from floor_defn
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floor_plus_int_pr: Prove floor_plus_int from
floor_plus_i,
floor_defn {x «— z + i},
floor_eq_hack {z — x +14, i & [T] +%, J < lz+1]}

neg_floor_eq.ceil_neg_pr: Prove neg_floor_eq_ceil_neg from
floor_defn, ceil_defn {z — —z}

neg_ceil_eq_floor_neg_pr: Prove neg_ceil_eq_floor_neg from
floor_defn {x « —x}, ceil_defn

ceil_sum_pr: Prove ceil_ sum from
ceil_defn {z —  + y}, ceil defn {z — y}, ceil_defn

abs_ceil_sum_pr: Prove abs_ceil_sum from
| 1} {z « =]+ [y]}.
| % 1] {z « [z +yl}.
ceil_defn {x — = + y}.
ceil_defn {z < y},
ceil_defn

ceil_int_pr: Prove ceil_int from ceil_defn {z — i}
floor_int_pr: Prove floor_int from floor_defn {z « i}

End floor ceil
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D.5 natinduction
natinduction: Module
Theory

i,7,m,my,n: Var nat
p, prop: Var function[nat — bool]

induction: Theorem (prop(0) A (Vj : prop(7) D prop(j + 1))) O prop(i)

complete_induction: Theorem
(Yi:(Vj:j<idp(j)) 2 p() D (Vn:pn)

induction_.m: Theorem
p(m) A (Yi:i>mAp(i) Op(i+1))D(Vn:n>m D p(n))

limited_induction: Theorem
(m<m Dpm)A(Vii>mnai< m1 Ap(i) D p(i + 1))
S(Yn:n>mAn<m >pn)

Proof
Using noetherian
less: function[nat, nat — bool] == (Am,n:m < n)

instance: Module is noetherian|nat, less]
x: Var nat
identity: function[nat — nat] == (A n : n)

discharge: Prove well_founded {measure «— identity }

complete_ind_pr: Prove complete induction {i — d1@p1} from
general_induction {d «— n, dy « j}

ind_proof: Prove induction {j «— pred(d,@pl)} from
general_induction {p « prop, d « i, dy — j}

(* Substitution for n in following could simply be n <- n-m
but then the TCC would not be provable x)

ind_m_proof: Prove induction_m {i — jap1l + m} from
induction
{prop <= (X z : p@c(x + m)),
i« if n>m then n — m else 0 end if}

limited_proof: Prove limited_induction {i — i@pl} from
induction.m {p — (Az:z <m; > p@c(x))}
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(*

(* These results can also be proved the other way about but the

TCCs are more complex *)

alt_ind_m_proof: PROVE induction_m {i <- d1@p1 + m - 1} FROM

general _induction
{d <-n - m,
d2 <- i - m,
p <- (LAMBDA x : plc(x + m))}

alt_ind_proof: PROVE induction {i <- i@pl - m@pl} FROM
induction_m {p <- (LAMBDA x : p@c(x - m)), n <- n@c + m}

*)

End natinduction
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D.6 noetherian

noetherian: Module [dom: Type, <: function[dom, dom — bool]]

Assuming

measure: Var function[dom — nat]
a,b: Var dom

well_founded: Formula (3 measure: a < b > measure(a) < measure(b))

Theory

p, A, B: Var function[dom — bool|
d,d;, ds: Var dom

general_induction: Axiom
(Ydi: (Vdz:dy < di Dp(dp)) Dp(di)) D (Vd: p(d))

ds,dy: Var dom

mod _induction: Theorem
(Vdg,d4 tdy < d3 D) A(d3) D] A(d4))
A (Vd] : (de rdy < dp D (A(dl) A B(dz))) D B(dl))
D(Vd: A(d) D B(d))

Proof

mod_proof: Prove mod_induction
{dl — dl@pl,
d3 «— dl@pl,
dy — dp} from general_induction {p — (A d: A(d) > B(d))}

End noetherian
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D.7 countmod
countmod: Module
Exporting all
Theory

i1: Var int
posint: Type from nat with (Xip 4 >0)
I, m,n,p,q,p1,P2, 41,92, P3, g3 var nat
i, ], k: Var nat
z,y,2,7,8,t: Var number
X.,Y, Z: Var number
ppred, ppredl, ppred2: Var function|[nat — bool]
#,,~: Var function[nat — number]
countsize: function[function[nat — bool], nat — nat] = (A ppred,i : )
count: Recursive function[function[nat — bool], nat — nat] =
(Appred,i: (if¢:>0
then ( if ppred(i — 1)
then 1+ (count(ppred,i — 1))
else count(ppred,i — 1)
end if)
else 0
end if)) by countsize
(*+ Count Complement was moved from ica3 *)

count_complement: Lemma count((Ag: —ppred(q)),n) = n — count(ppred, 1)
count_exists: Lemma count(ppred,n) > 02 (3p:p <nA ppred(p))
count_true: Lemma count((Ap: true),n) =n

count_false: Lemma count(( A p : false),n) =0

imp_pred: function{function[nat — bool], function[nat — bool] — bool] =
(X ppredl,ppred2 : (Vp: ppred1(p) D ppred2(p)))

imp_pred_lem: Lemma imp_pred(ppred1, ppred2) D (ppred1(p) O ppred2(p))
imp_pred_or: Lemma imp_pred(ppredl, (Ap: ppred1(p) V ppred2(p)))

count_imp: Lemma imp_pred(ppredl, ppred2)
> count(ppredl,n) < count(ppred2, n)

count_or: Lemma count(ppredl,n) > k
> count(( A p : ppredl(p) V ppred2(p)),n) > k

count_bounded_imp: Lemma count((Ap:p<nD ppred(p)), n) = count(ppred,n)
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count_bounded_and: Lemma count((Ap:p < nA ppred(p)), n) = count(ppred, n)

pigeon_hole: Lemma
count(ppredl,n) + count(ppred2,n) > n + k
D count((Ap : ppredl(p) A ppred2(p)),n) > k

predl, pred2: Var function[nat — bool]
pred_extensionality: Axiom (Vp:predl(p) = pred2(p)) O predl = pred?2

(* these are in the theory section so the tcc module won’t complain *)
nk_type: Type = Record n : nat,
k : nat
end record
nk, nkl,nk2: Var nk_type
nk_less: function[nk_type, nk_type — bool] ==
(Ankl,nk2:nkl.n + nkl.k < nk2.n + nk2.k)

Proof
Using natinduction, noetherian
imp_pred_lem_pr: Prove imp_pred_lem from imp_pred {p — pQc}

imp_pred_or_pr: Prove imp_pred_or from
imp_pred {ppred2 « (A p: ppred1(p) V ppred2(p))}

count_imp0: Lemma
imp_pred(ppred1, ppred2) O count(ppredl, 0) < count(ppred2, 0)

count_imp_ind: Lemma
(imp_pred(ppred1, ppred2) O count(ppredl, n) < count(ppred?, n))
D (imp_pred(ppred1, ppred2)
D count(ppredl,n + 1) < count(ppred2, n + 1))

count_imp0_pr: Prove count_imp0 from
count {i — 0, ppred — ppredl}, count {i « 0, ppred « ppred2}

count_imp_ind_pr: Prove count_imp_ind from
count {ppred «— ppredl, i « n + 1},
count {ppred — ppred2, i «— 7, + 1},
imp_pred {p — n}
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count_imp_pr: Prove count.imp from
induction
{prop — (An:
(imp_pred(ppredl, ppred2) D count(ppredl,n) < count(ppred2,n))),
i — nQc},
count_imp0,
count_imp_ind {n — j@pl}

count_or_pr: Prove count_or from
count_imp {ppred2 — (Ap: ppred1(p) V ppred2(p))}, imp_pred_or

count_bounded_imp0: Lemma
k>0D>count((Ap:p<kD ppred(p)),0) = count(ppred,0)

count_bounded_imp_ind: Lemma
(k>nDcount((Ap:p< k D ppred(p)),n) = count(ppred, n))
>(k=>n+1
Scount({Ap:p<kD ppred(p)),n+ 1) = count(ppred,n + 1))

count_bounded_imp_k: Lemma
(k>n D count((Ap:p< k O ppred(p)),n) = count(ppred, n))

count_bounded_imp0_pr: Prove count_bounded_imp0 from
count {i «— 0}, count {ppred — (Ap:p < k O ppred(p)). ¢ « 0}

count_bounded_imp_ind_pr: Prove count_bounded_imp_ind from
count {i — n +1},
count {ppred — (Ap:p <k D ppred(p)), i — n+ 1}

count_bounded_imp_k_pr: Prove count_bounded_imp_k from
induction
{prop — (An:
k>nDcount((Ap:p<kD ppred(p)),n) = count(ppred,n)),
i« n},
count_bounded_imp0,
count_bounded_imp_ind {n «— j@pl}

count_bounded_imp_pr: Prove count_bounded_imp from
count_bounded_imp_k {k — n}

count_bounded_and0: Lemma
kE>0>count((Ap:p<kA ppred(p)), 0) = count(ppred, 0)

count_bounded_and_ind: Lemma
(k>nDcount((Ap:p <kA ppred(p)),n) = count(ppred, 1))
S>(kzn+1
S count((Ap: p < k Appred(p)),n + 1) = count(ppred,n + 1))
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count_bounded_and_k: Lemma
(k>n Dcount((Ap:p < kAppred(p)),n) = count(ppred, n))

count_bounded_andQ_pr: Prove count_bounded_and0 from
count {i « 0}, count {ppred — (Ap:p < k A ppred(p)), i < 0}

count_bounded_and_ind_pr: Prove count_bounded_and_ind from
count {i «— n + 1},
count {ppred < (Ap:p < k A ppred(p)), i — n + 1}

count_bounded_and_k_pr: Prove count_bounded_and_k from
induction
{prop — (An:
k>n D count((Ap:p < kAppred(p)),n) = count(ppred, n)),
i+ n},
count_bounded_and0,
count_bounded_and_ind {n « jQpl}

count_bounded_and_pr: Prove count_bounded_and from
count_bounded_and_k {k — n}

count_false_pr: Prove count_false from
count_true,
count_complement {ppred «— (A p: true)},
pred_extensionality
{predl — (A p: —true),
pred2 — (A p : false)}

ccO0: Lemma count(( A g : ~ppred(g)),0) = 0 — count(ppred, 0)

cc.ind: Lemma (count(( A ¢ : —ppred(g)),n) = n — count(ppred, n))
D (count({ A g : —ppred(q)),n+ 1) = n+ 1 — count(ppred,n + 1))

ccO_pr: Prove cc0 from
count {ppred « (A g : —ppred(q)), i < 0}, count {i — 0}

cc.ind_pr: Prove cc_ind from
count {ppred « (A g : —ppred(q)), i — n+ 1}, count {i «—n+ 1}

count_complement_pr: Prove count_complement from
induction
{prop — (A n : count(( A q: —ppred(q)),n) = n — count(ppred, n)),
1+ n},
cc0,
cc.ind {n « jQpl}

instance: Module is noetherian[nk_type, nk_less]
nk_measure: function[nk_type — nat] == (A nkl: nkl.n + nkl.k)
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nk_well_founded: Prove well_founded {measure < nk_measure}

nk_ph_pred: function[function[nat — bool], function[nat — bool], nk_type
— bool] =
( A ppredl, ppred2, nk :
count(ppredl, nk.n) + count(ppred2, nk.n) > nk.n + nk.k
O count(( A p : ppred1(p) A ppred2(p)), nk.n) > nk.k)
nk_noeth_pred: function[function[nat — bool], function[nat — bool],
nk_type — bool] =
( A ppredl, ppred2, nkl :
(V nk2 : nk_less(nk2, nk1) O nk_ph_pred(ppredl, ppred2, nk2)))

ph_casel: Lemma count(( A p : ppred1(p) A ppred2(p)), pred(n)) > k
> count({ A p : ppred1(p) A ppred2(p)),n) > k

ph_casel_pr: Prove ph_casel from
count {ppred «— (A p: ppred1(p) A ppred2(p)), i < n}

ph_case2: Lemma count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k
A count(ppredl,n) + count(ppred2,n) > n+k
A count(( X p : ppred1(p) A ppred2(p)), pred(n)) > pred(k)
> count(( A p : ppred1l(p) A ppred2(p)),n) > k

ph_case2a: Lemma count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k
A count(ppredl, n) + count(ppred2,n) > n + k
> ppred1(pred(n)) A ppred2(pred(n))

ph_case2b: Lemma n > 0
Ak > 0 A count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n} + k
A count(ppredl, n) + count(ppred2,n) > n + k
> count(ppred1, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(k)

ph_case2a_pr: Prove ph_case2a from
count {ppred «— ppredl, i « n}, count {ppred — ppred2, i — n}

ph_case2b_pr: Prove ph_case2b from
count {ppred « ppredl, i «— n}, count {ppred «— ppred2, i «— n}

ph_case2_pr: Prove ph_case2 from
count. {ppred «— (A p : ppred1(p) A ppred2(p)), i « n}, ph_case2a

ph_case0: Lemma (n =0V k =0)
> (count(ppredl,n) + count(ppred2,n) > n +k
> count(( A p : ppred1(p) A ppred2(p)),n) > k)

ph_caseOn: Lemma (count(ppredl,0) + count(ppred2,0) > k
> count({ A p : ppred1(p) A ppred2(p)),0) > k)
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ph_caseOn_pr: Prove ph_caseOn from
count {ppred «— ppredl, i — 0},
count {ppred «— ppred2, ¢ — 0},
count {ppred < (A p: ppredl(p) A ppred2(p)), i < 0}

ph_caseOk: Lemma count({ A p : ppred1(p) A ppred2(p)),n) > 0

ph_caseOk_pr: Prove ph_caseOk from
nat_invariant {nat_var «— count(( A p: ppred1(p) A ppred2(p)),n)}

ph_case0_pr: Prove ph case0 from ph_caseOn, ph_caseOk

nk_ph_expand: Lemma
(¥n,k : (count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(k)
D count(( A p: ppred1(p) A ppred2(p)), pred(n)) > pred(k))
A (count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + k
D count(( A p : ppredl(p) A ppred2(p)), pred(n)) > k)
D (count(ppredl, n) + count(ppred2,n) > n + k
D count(( Ap : ppred1(p) A ppred2(p)),n) > k))

nk_ph_expand_pr: Prove nk_ph_expand from
ph_case0, ph_casel, ph case2, ph_case2a, ph_case2b

nk_ph_noeth_hyp: Lemma
(V nkl : nk_noeth_pred(ppredl, ppred2, nkl)
D nk_ph_pred(ppredl, ppred2, nkl))

nk_ph_noeth_hyp_pr: Prove nk_ph noeth_hyp from
nk_ph_pred {nk «— nkl1},
nk_noeth_pred {nk2 «— nkl with [(n) := pred(nkl.n)]},
nk_noeth_pred {nk2 «— nkl with [(r ) pred(nkl.n), (k) := pred(nkl.k)|},
nk_ph_pred {nk «— nkl with [(n) := (nkl n)]},
nk_ph_pred {nk «— nkl with [(n) := pre d(nkl.n), (k) := pred(nkl.k)]},
nk_ph_expand {n «— nkl.n, k «— nkl.k},
ph.case0 {n « nkl.n, k < nkl.k},
nat_invariant {nat_var — nkl.n},
nat_invariant {nat_var «— nkl.k}

nk_ph_lem: Lemma nk_ph_pred(ppredl, ppred2, nk)

nk_ph_lem_pr: Prove nk_ph_lem from
general_induction
{p — (A nk : nk_ph_pred(ppred1, ppred2, nk)),
dy — nk2@p3,
d — nk@Qc},
nk_ph_noeth_hyp {nkl «— d;@pl},
nk_noeth_pred {nkl «— d,@Qp1}
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pigeon_hole_pr: Prove pigeon_hole from
nk_ph_lem {nk « nk with [(n) := n@c, (k) := kQc|},
nk_ph_pred {nk — nk@p1}

exists_less: function[function[nat — bool], nat — bool] =
(Appred,n: (3p:p < nA ppred(p)))

count_exists_base: Lemma count(ppred, 0) > 0 D exists_less(ppred, 0)

count_exists_base_pr: Prove count_exists_base from
count {i « 0}, exists_less {n «— 0}

count_exists_ind: Lemma
(count(ppred,n) > 0 D exists_less(ppred, n))
D (count(ppred,n + 1) > 0 D exists_less(ppred, n + 1))

count_exists_ind_pr: Prove count_exists_ind from
count {i — n+ 1},
exists_less,
exists_less {n «— n+1, p — ( if ppred(n) then n else p@p2 end if)}

count_exists_pr: Prove count_exists {p — p@p4} from
induction
{prop « (A n : count(ppred,n) > 0 D exists_less(ppred, n}),
i «— n@c},
count_exists_base,
count_exists.ind {n «— j@pl},
exists_less {n — i@pl}

count_base: Sublemma count(ppred,0) =0
count_base_pr: Prove count_base from count {i «— 0}

count_true_ind: Sublemma
(count(( A p : true),n) = n) D count((Ap:true),n+1)=n+1

count_true_ind_pr: Prove count_true_ind from
count {ppred — (Ap:true), i —n+1}

count_true_pr: Prove count_true from
induction {prop « (An : count((Ap : true),n) = n), i « n@Qc},
count_base {ppred — (A p: true)},
count_true_ind {n « j@pl}

End countmod
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